The objective of this thesis is the synthesis of organic polymers on inert surfaces in ultra-high vacuum (UHV), leveraging the principles of self-assembly and on-surface synthesis (OSS). Additionally, the research aims to characterize these polymers at a sub-molecular level using techniques such as scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and low energy electron diffraction (LEED). The fundamental concept underlying OSS techniques is to mimic mechanisms of organic synthesis on surfaces that serve both as a substrate for molecules and as a catalyst. The primary focus of the thesis is to develop an efficient and reproducible method for generating ultra-thin surfaces of iron oxide on diverse substrates, while exploring various epitaxial growths. Ultra-thin films of iron oxide are known for their significant catalytic and magnetic properties. The subsequent phase of the research is centered on investigating the Ulmann coupling mechanism between dibenzothiophene (DBTP) molecules on ultra-thin films of iron oxide. This process leads to the formation of a 2D polymer comprising poly-para-phenylene, characterized as a π-conjugated polymer with a broad band gap. Employing UHV techniques (STM, XPS, UPS, LEED), the study will delve into the structures and organization of molecules on inert surfaces, examining their characteristics under varying temperature conditions.

L’obiettivo della tesi è la sintesi di polimeri organici su superfici inerti in ultra-alto vuoto (UHV) sfruttando i principi del self-assembly e della on-surface synthesis(OSS), e la loro caratterizzazione chimico fisica a livello sub-molecolare attraverso tecniche STM, XPS, UPS e LEED. Il concetto di base delle tecniche di OSS è quello di riprodurre meccanismi di sintesi organica su superfici che fungono sia da substrato per le molecole che da catalizzatore Il primo obbiettivo della tesi è quello di trovare un metodo efficiente e riproducibile per produrre superfici ultra-sottili di ferro ossido su diversi tipi di substrati e studiare diverse crescite epitassiali, film ultra-sottili di ferro-ossido hanno importanti caratteristiche catalitiche e magnetiche. La seconda parte della ricerca invece si basa sullo studio del meccanismo di Ulmann coupling tra molecole di DBTP, su film ultra sottili di ferro-ossido, che porta alla formazione di un polimero 2D di poli-para-fenilene, polimero -coniugato a largo band gap. Tramite le tecniche di UHV(STM,XPS,UPS,LEED)verranno investigate le strutture e l’organizzazione delle molecole su superfice inerte e le loro caratteristiche al variare della temperatura.

SINTESI E CARATTERIZZAZIONE IN UN ULTRA ALTO VUOTO DI POLI PARA FENILENE SU SUPERFICI DI FERRO OSSIDO

CONTI, GIANNI
2023/2024

Abstract

The objective of this thesis is the synthesis of organic polymers on inert surfaces in ultra-high vacuum (UHV), leveraging the principles of self-assembly and on-surface synthesis (OSS). Additionally, the research aims to characterize these polymers at a sub-molecular level using techniques such as scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and low energy electron diffraction (LEED). The fundamental concept underlying OSS techniques is to mimic mechanisms of organic synthesis on surfaces that serve both as a substrate for molecules and as a catalyst. The primary focus of the thesis is to develop an efficient and reproducible method for generating ultra-thin surfaces of iron oxide on diverse substrates, while exploring various epitaxial growths. Ultra-thin films of iron oxide are known for their significant catalytic and magnetic properties. The subsequent phase of the research is centered on investigating the Ulmann coupling mechanism between dibenzothiophene (DBTP) molecules on ultra-thin films of iron oxide. This process leads to the formation of a 2D polymer comprising poly-para-phenylene, characterized as a π-conjugated polymer with a broad band gap. Employing UHV techniques (STM, XPS, UPS, LEED), the study will delve into the structures and organization of molecules on inert surfaces, examining their characteristics under varying temperature conditions.
2023
Ultra High Vacuum Synthesis and Characterization of Poly Para-phenylene on Iron Oxide Surfaces.
L’obiettivo della tesi è la sintesi di polimeri organici su superfici inerti in ultra-alto vuoto (UHV) sfruttando i principi del self-assembly e della on-surface synthesis(OSS), e la loro caratterizzazione chimico fisica a livello sub-molecolare attraverso tecniche STM, XPS, UPS e LEED. Il concetto di base delle tecniche di OSS è quello di riprodurre meccanismi di sintesi organica su superfici che fungono sia da substrato per le molecole che da catalizzatore Il primo obbiettivo della tesi è quello di trovare un metodo efficiente e riproducibile per produrre superfici ultra-sottili di ferro ossido su diversi tipi di substrati e studiare diverse crescite epitassiali, film ultra-sottili di ferro-ossido hanno importanti caratteristiche catalitiche e magnetiche. La seconda parte della ricerca invece si basa sullo studio del meccanismo di Ulmann coupling tra molecole di DBTP, su film ultra sottili di ferro-ossido, che porta alla formazione di un polimero 2D di poli-para-fenilene, polimero -coniugato a largo band gap. Tramite le tecniche di UHV(STM,XPS,UPS,LEED)verranno investigate le strutture e l’organizzazione delle molecole su superfice inerte e le loro caratteristiche al variare della temperatura.
On surface synthesis
inert surface
STM,LEE
X ray photoelectron
Organic polymer
File in questo prodotto:
File Dimensione Formato  
Tesi Magistrale Scienza dei Materiali Gianni conti 2021831 A.pdf

accesso aperto

Dimensione 30.8 MB
Formato Adobe PDF
30.8 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/64073