The topic of surveillance for the stability of industrial process performance is of increasing interest to companies. The application of statistical process monitoring (SPM) focuses on the control of process quality characteristics, modeled as profiles. Motivated by this context, the thesis aims to show the adaptation of appropriate methods in the presence of dynamism in complex data, such as functional data. In particular, the study presents some techniques for surveillance of regression models with scalar or functional response and functional covariates. Indeed some procedures, through regression and clustering algorithms, can be used in these instances. The methods considered involve functional clustering combined with the application of control charts. These show the potential and practical application of this procedure, through constant and direct analyses whose codes are implemented through the use of R software. Phase I and Phase II analyses are carried out on two real cases. In the first, RSW spot welding joints are evaluated while in the second, CO2 emissions at each voyage of a ship are monitored. Once the effectiveness and power of the methods illustrated during Phase I had been verified, the sensitivity of these methods was studied in Phase II. The advantages of the surveillance procedures described seem to increase in the presence of high dynamism and confirm the importance of these statistical techniques in many application areas.
Il tema della sorveglianza per la stabilità delle performance di processi industriali è di crescente interesse per le aziende. L’applicazione dello statistical process monitoring (SPM) si concentra sul controllo delle caratteristiche di qualità del processo, modellate come profili. Motivata da questo contesto, la tesi intende mostrare l'adattamento di opportuni metodi in presenza di dinamicità in dati complessi, come ad esempio i dati funzionali. In particolare lo studio presenta alcune tecniche di sorveglianza di modelli di regressione con risposta scalare o funzionale e covariate funzionali. Alcune procedure infatti, attraverso algoritmi di regressione e clustering, possono essere utilizzate in questi casi. I metodi presi in considerazione riguardano il clustering funzionale combinato all’applicazione di carte di controllo. Questi mostrano le potenzialità e l’applicazione pratica di questa procedura, tramite analisi costanti e dirette i cui codici sono implementati tramite l’uso del software R. Le analisi di Fase I e Fase II vengono svolte su due casi reali. Nel primo si valutano le giunzioni delle saldature a punti RSW mentre nel secondo si sorvegliano le emissioni di CO2 per ogni viaggio di una nave. Una volta verificata l’efficacia e la potenza dei metodi illustrati durante la fase I, è stata studiata la sensibilità di tali metodi in Fase II. I vantaggi delle procedure di sorveglianza descritte sembrano crescere in presenza di elevata dinamicità e confermano l'importanza di queste tecniche statistiche in molti ambiti applicativi.
Sorveglianza della stabilità delle performance di processi in ambito industriale
MORO, ALBERTO
2023/2024
Abstract
The topic of surveillance for the stability of industrial process performance is of increasing interest to companies. The application of statistical process monitoring (SPM) focuses on the control of process quality characteristics, modeled as profiles. Motivated by this context, the thesis aims to show the adaptation of appropriate methods in the presence of dynamism in complex data, such as functional data. In particular, the study presents some techniques for surveillance of regression models with scalar or functional response and functional covariates. Indeed some procedures, through regression and clustering algorithms, can be used in these instances. The methods considered involve functional clustering combined with the application of control charts. These show the potential and practical application of this procedure, through constant and direct analyses whose codes are implemented through the use of R software. Phase I and Phase II analyses are carried out on two real cases. In the first, RSW spot welding joints are evaluated while in the second, CO2 emissions at each voyage of a ship are monitored. Once the effectiveness and power of the methods illustrated during Phase I had been verified, the sensitivity of these methods was studied in Phase II. The advantages of the surveillance procedures described seem to increase in the presence of high dynamism and confirm the importance of these statistical techniques in many application areas.File | Dimensione | Formato | |
---|---|---|---|
Moro_Alberto.pdf
accesso aperto
Dimensione
1.61 MB
Formato
Adobe PDF
|
1.61 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/64204