The increasing energy demand and the pressing climate change are recently motivating the conversion of the energy supply chain from fossil fuels to renewable sources. These systems, however, are limited by their intermittence in energy production. This fact poses the challenge of finding new effective ways to store energy. Electrochemical storage systems are one of the most promising solutions to this issue. Among them, secondary metal-air batteries are elected as a key candidate due to their security, scalability, affordability, and intrinsic specific energy. The performances of these systems rely on oxygen electrode reaction since oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) occur respectively in the charge and discharge of the cell. To try to facilitate the well-known sluggish kinetics of these reactions and to limit the overpotential-related energy losses in the charging and discharging process, new kinds of bifunctional catalysts are being developed. Among them, single-atom catalysts and dual-atom catalysts, made by single metal atoms well-coordinated in a conductive support, seem to be the most promising to replace the well-performing, though scarce and expensive, noble metals such as platinum, iridium, and rhodium. In this thesis, the electrochemical activity towards oxygen electrode reactions of single and dual-atom catalysts based on iron and manganese on a nitrogen-doped carbon nanotube support was investigated. The tested catalysts were obtained through a thermal synthesis and characterized using transmission electron microscopy (TEM), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The electrochemical performance of the proposed catalysts was determined by evaluating the ORR and OER activity in alkaline electrolyte using rotating disk electrode (RDE) and rotating-ring disk electrode (RRDE). The effect of the iron-to-manganese ratio on the morphology and the activity of the synthesized materials was also examined.
La crescente domanda di energia e l'urgente necessità di contrastare il cambiamento climatico stanno accelerando la transizione dai combustibili fossili alle fonti energetiche rinnovabili. Tuttavia, l'intermittenza nella produzione di energia da questi sistemi rappresenta una sfida per lo stoccaggio efficiente dell'energia. I sistemi di accumulo elettrochimico si propongono come una soluzione promettente e, tra questi, le batterie secondarie metallo-aria si distinguono per la loro sicurezza, scalabilità, economicità ed elevata densità di energia. Le prestazioni di queste batterie dipendono dalle reazioni all'elettrodo di ossigeno: la reazione di evoluzione dell'ossigeno (OER) durante la carica e la reazione di riduzione dell'ossigeno (ORR) durante la scarica. Per superare la cinetica lenta di queste reazioni e minimizzare le perdite di energia legate al sovra potenziale durante la carica e la scarica, sono in fase di sviluppo nuovi catalizzatori bifunzionali. I catalizzatori a singolo atomo e a doppio atomo, composti da singoli atomi metallici ancorati a un supporto conduttivo, appaiono come i sostituti più promettenti per i metalli nobili, ad alte prestazioni ma rari e costosi, come platino, iridio e rodio. In questa tesi sono è stata investigata l'attività elettrochimica per le reazioni all'elettrodo di ossigeno di catalizzatori a singolo e doppio atomo basati su ferro e manganese su supporti di nanotubi di carbonio dopati con azoto. I catalizzatori sono stati sintetizzati termicamente e caratterizzati mediante microscopia elettronica a trasmissione (TEM), diffrazione di raggi X (XRD) e spettroscopia fotoelettronica a raggi X (XPS). Le loro prestazioni elettrochimiche per ORR e OER sono state valutate in elettrolita alcalino mediante elettrodo a disco rotante (RDE) ed elettrodo a disco ad anello rotante (RRDE). Infine, è stata esaminata l'influenza del rapporto ferro-manganese sulla morfologia e sull'attività dei materiali sintetizzati.
Bifunctional dual-atom catalysts for oxygen electrode reactions in metal-air batteries
ZAVA, GIOVANNI
2023/2024
Abstract
The increasing energy demand and the pressing climate change are recently motivating the conversion of the energy supply chain from fossil fuels to renewable sources. These systems, however, are limited by their intermittence in energy production. This fact poses the challenge of finding new effective ways to store energy. Electrochemical storage systems are one of the most promising solutions to this issue. Among them, secondary metal-air batteries are elected as a key candidate due to their security, scalability, affordability, and intrinsic specific energy. The performances of these systems rely on oxygen electrode reaction since oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) occur respectively in the charge and discharge of the cell. To try to facilitate the well-known sluggish kinetics of these reactions and to limit the overpotential-related energy losses in the charging and discharging process, new kinds of bifunctional catalysts are being developed. Among them, single-atom catalysts and dual-atom catalysts, made by single metal atoms well-coordinated in a conductive support, seem to be the most promising to replace the well-performing, though scarce and expensive, noble metals such as platinum, iridium, and rhodium. In this thesis, the electrochemical activity towards oxygen electrode reactions of single and dual-atom catalysts based on iron and manganese on a nitrogen-doped carbon nanotube support was investigated. The tested catalysts were obtained through a thermal synthesis and characterized using transmission electron microscopy (TEM), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The electrochemical performance of the proposed catalysts was determined by evaluating the ORR and OER activity in alkaline electrolyte using rotating disk electrode (RDE) and rotating-ring disk electrode (RRDE). The effect of the iron-to-manganese ratio on the morphology and the activity of the synthesized materials was also examined.File | Dimensione | Formato | |
---|---|---|---|
Giovanni_Zava.pdf
accesso aperto
Dimensione
7.12 MB
Formato
Adobe PDF
|
7.12 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/64349