The blood-brain barrier (BBB) is a dynamic interface between capillary blood flux and the central nervous system (CNS), allowing the passage of essential nutrients for the normal metabolism of brain cells and providing protection against many toxic compounds and pathogens. The BBB is primarily formed by endothelial cells, astrocytes and pericytes. The application of microfluidic technology provides a promising avenue for replicating the blood-brain barrier (BBB). The objective of this study is to design and create a microfluidic BBB device for investigating treatment strategies for glioblastoma cancer. The microfluidic BBB-on-a-Chip developed in this work is composed by two PDMS layers and a porous PETE membrane in between featuring pores with a diameter of 3 μm. These layers are sealed together through plasma treatment. The top horizontal microchannel has an inlet and an outlet and it closed below by the membrane, which is in direct contact with the bottom horizontal microchannel. Cells are seeded on both sides of the membrane: HUVEC on the top and a coculture of astrocytes and pericytes on the bottom. The Live&Dead assay indicates cell viability up to two weeks. Staining with Phalloidin and DAPI highlights the presence of actin filaments, a protein that constitutes the cell's cytoskeleton. Immunofluorescence analysis with CD31 and ZO-1 monoclonal antibodies reveals the formation of the endothelial barrier and the presence of tight junction proteins, respectively. In the final stage of the study, 3D Glioblastoma spheroids are seeded in the dedicated area of the BBB microfluidic device. Subsequently, different drugs are fluxed into the upper part of the device to test their capability to cross the membrane and reach the cancer spheroids area.
La barriera emato-encefalica (BBB) è un’interfaccia dinamica tra il flusso sanguigno capillare ed il sistema nervoso centrale (SNC), che consente il passaggio di nutrienti essenziali per il normale metabolismo delle cellule cerebrali e fornisce protezione da molte sostenze tossiche e da patogeni. La BBB è principalmente formata da cellule endoteliali, astrociti e periciti. L’applicazione della tecnologia microfluidica offre una promettente via per replicare la barriera ematoencefalica (BBB). L’obiettivo di questo studio è progettare e creare un dispositivo microfluidico per investigare strategie di trattamento per il glioblastoma. Il dispositivo microfluidico sviluppato in questo progetto è composto da due strati di PDMS separati da una membrana porosa in PETE con pori di diametro di 3 μm. Questi strati sono sigillati assieme tramite un trattamento al plasma. Il microcanale orizzontale superiore ha un ingresso ed un’uscita ed è chiuso sotto dalla membrana, che è in contatto diretto con il microcanale orizzontale inferiore. Le cellule vengono seminate su entrambi i lati della membrana: le HUVEC sulla parte superiore e la bicoltura di astrociti e periciti sulla parte inferiore. Il saggio Live&Dead indica una buona vitalità cellulare dopo due settimane di coltura. L’utilizzo di marcatori fluorescenti quali falloidina e DAPI ha evidenziato la corretta morfologia di tutte le linee cellulari seminate all’interno del dispositivo. Tramite immunofluorescenza è stata verificata la presenza di specifiche proteine quali CD31 e ZO-1, indice della corretta formazione della BBB. Nella fase conclusiva dello studio, gli sferoidi di glioblastoma sono stati accuratamente seminati nell’area designata all’interno del dispositivo microfluidico. Successivamente alcuni farmaci vengono introdotti in continuo nella parte superiore del dispositivo verificando in questo modo la loro capacità di attraversare la membrana e raggiungere l’area degli sferoidi tumorali. Questa metodologia consente di validare in modo specifico l’efficacia della barriera emato-encefalica simulata, fornendo importanti informazioni per lo sviluppo e la valutazione di strategie di trattamento mirate.
Design and validation of a microfluidics based blood brain barrier (BBB)-on-chip for in vitro Glioblastoma cancer treatment
DE MARCHI, MARTINA
2023/2024
Abstract
The blood-brain barrier (BBB) is a dynamic interface between capillary blood flux and the central nervous system (CNS), allowing the passage of essential nutrients for the normal metabolism of brain cells and providing protection against many toxic compounds and pathogens. The BBB is primarily formed by endothelial cells, astrocytes and pericytes. The application of microfluidic technology provides a promising avenue for replicating the blood-brain barrier (BBB). The objective of this study is to design and create a microfluidic BBB device for investigating treatment strategies for glioblastoma cancer. The microfluidic BBB-on-a-Chip developed in this work is composed by two PDMS layers and a porous PETE membrane in between featuring pores with a diameter of 3 μm. These layers are sealed together through plasma treatment. The top horizontal microchannel has an inlet and an outlet and it closed below by the membrane, which is in direct contact with the bottom horizontal microchannel. Cells are seeded on both sides of the membrane: HUVEC on the top and a coculture of astrocytes and pericytes on the bottom. The Live&Dead assay indicates cell viability up to two weeks. Staining with Phalloidin and DAPI highlights the presence of actin filaments, a protein that constitutes the cell's cytoskeleton. Immunofluorescence analysis with CD31 and ZO-1 monoclonal antibodies reveals the formation of the endothelial barrier and the presence of tight junction proteins, respectively. In the final stage of the study, 3D Glioblastoma spheroids are seeded in the dedicated area of the BBB microfluidic device. Subsequently, different drugs are fluxed into the upper part of the device to test their capability to cross the membrane and reach the cancer spheroids area.File | Dimensione | Formato | |
---|---|---|---|
DeMarchi_Martina.pdf
embargo fino al 12/04/2025
Dimensione
4.08 MB
Formato
Adobe PDF
|
4.08 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/64446