Bone diseases pose significant challenges to healthcare and often require innovative strategies for tissue regeneration. Tissue engineering offers promising solutions by providing biomimetic scaffolds designed to reproduce the natural extracellular matrix (ECM), direct cells growth and differentiation. Despite the marked advancements made in conventional scaffold-based tissue engineering, replicating physiological complexity has proven to be a persistent task. Bottom-up tissue engineering procedures have introduced an innovative approach for assembling living building blocks into customized tissue architectures. In this context, scaffold surface topography has emerged as a main area of research aimed at improving tissue-specific cell interactions by mimicking the intricate microenvironment of native tissue. By tailoring surface features such as roughness, pattern geometry, and porosity, researchers can create scaffolds that selectively enhance the adhesion of specific cell types and guide cellular organization and spatial distribution. These characteristics are crucial for the development of fully functional tissue units. This thesis addresses the challenge of imprinting a specific pattern on the surface of poly (lactic-co-glycolic acid) (PLGA) microparticles. It is well-known that cells can sense surface topographies down to the nanometre scale, and numerous studies have investigated the effects of structures such as ridges, pillars, and grooves. In this project the surface pattern imitates the natural shape of the cells themselves, using cell culture plates as the template. The method employed includes several steps: synthesizing PLGA microparticles via emulsion, undertaking cell cultures, creating molds using polydimethylsiloxane and pre-treating the microparticles. The characterization through scanning electron microscopy and profilometry enabled to evaluate the presence of the pattern on the microparticles surface and point out the best conditions among those tested. Additionally, a 3D cell culture with human Mesenchymal stem cells was conducted; it has been showed that the cells and the microparticles formed a three-dimensional structure, known as spheroids, in the wells. The aim is to create a surface that closely resembles the morphology of cells on the microparticles, potentially enhancing cell-substrate interactions and influencing stem cell fate. In addition, applying these topographical features to PLGA microparticles used as building block biomaterial will introduce a three-dimensional response, thus closely mimicking the physiological conditions, rather than the conventional two-dimensional setting often used in similar studies.
Le malattie ossee rappresentano una sfida significativa per il settore sanitario e spesso richiedono strategie innovative per la rigenerazione del tessuto. L’ingegneria tissutale offre soluzioni promettenti fornendo scaffold biomimetici progettati per riprodurre la matrice extracellulare naturale e guidare la crescita e il differenziamento cellulare. Nonostante i significativi progressi nell'ingegneria tissutale convenzionale il compito di replicare la complessità fisiologica si è rivelata una sfida persistente. L’approccio bottom-up ha introdotto un metodo innovativo in cui vengono assemblati blocchi costruttivi in architetture tissutali viventi. In questo contesto, la topografia superficiale degli scaffold è emersa come un'area principale di ricerca volta a migliorare le interazioni cellulari imitando l’intricato microambiente nativo. Attraverso la modifica di caratteristiche superficiali quali rugosità, geometria del pattern e porosità, molti studi hanno sviluppato scaffold che favoriscono selettivamente l'adesione di determinati tipi cellulari e dirigono l'organizzazione e la distribuzione spaziale delle cellule. Queste proprietà sono essenziali da determinare quindi per la realizzazione di unità tissutali completamente funzionali. Questa tesi affronta la sfida di imprimere una modifica della topografia superficiale su microparticelle di poli (acido lattico-co-glicolico) (PLGA). È noto infatti che le cellule sono capaci di percepire topografie superficiali a livello nanometrico, e molti studi hanno esplorato gli effetti di strutture quali creste, colonne e scalanature presenti sulla superficie di biomateriali. In questo progetto, il pattern desiderato sulla superficie delle microparticelle vuole riprodurre la morfologia naturale delle cellule stesse che vengono utilizzate come stampi dalle piastre di coltura. I metodi impiegati includono diversi passaggi: sintesi di microparticelle di PLGA tramite emulsione, coltura cellulare, creazione di stampi usando polidimetilsilossano e pretrattamento delle microparticelle. La caratterizzazione tramite microscopio a scansione elettronica e profilometro ha permesso di valutare la presenza del pattern sulla superficie delle microparticelle e di evidenziare le condizioni migliori tra quelle testate. Inoltre, è stata condotta una coltura cellulare 3D con cellule staminali mesenchimali umane; è stato dimostrato che le cellule e le microparticelle formavano nei pozzetti delle strutture tridimensionali, note come sferoidi. L'obiettivo è quello di creare una superficie in cui si possa osservare la morfologia delle cellule, migliorando potenzialmente le interazioni tra cellula e substrato e influenzando il percorso evolutivo delle cellule staminali. La stampa di questo pattern su microparticelle di PLGA ha prodotto una risposta tridimensionale delle cellule. Sono state simulate infatti più fedelmente le condizioni fisiologiche, a differenza dell'approccio bidimensionale tradizionalmente adottato in studi analoghi.
Modifica della topografia superficiale di microparticelle di acido poli(lattico-co-glicolico) per la rigenerazione del tessuto osseo
BERTI, FEDERICO
2023/2024
Abstract
Bone diseases pose significant challenges to healthcare and often require innovative strategies for tissue regeneration. Tissue engineering offers promising solutions by providing biomimetic scaffolds designed to reproduce the natural extracellular matrix (ECM), direct cells growth and differentiation. Despite the marked advancements made in conventional scaffold-based tissue engineering, replicating physiological complexity has proven to be a persistent task. Bottom-up tissue engineering procedures have introduced an innovative approach for assembling living building blocks into customized tissue architectures. In this context, scaffold surface topography has emerged as a main area of research aimed at improving tissue-specific cell interactions by mimicking the intricate microenvironment of native tissue. By tailoring surface features such as roughness, pattern geometry, and porosity, researchers can create scaffolds that selectively enhance the adhesion of specific cell types and guide cellular organization and spatial distribution. These characteristics are crucial for the development of fully functional tissue units. This thesis addresses the challenge of imprinting a specific pattern on the surface of poly (lactic-co-glycolic acid) (PLGA) microparticles. It is well-known that cells can sense surface topographies down to the nanometre scale, and numerous studies have investigated the effects of structures such as ridges, pillars, and grooves. In this project the surface pattern imitates the natural shape of the cells themselves, using cell culture plates as the template. The method employed includes several steps: synthesizing PLGA microparticles via emulsion, undertaking cell cultures, creating molds using polydimethylsiloxane and pre-treating the microparticles. The characterization through scanning electron microscopy and profilometry enabled to evaluate the presence of the pattern on the microparticles surface and point out the best conditions among those tested. Additionally, a 3D cell culture with human Mesenchymal stem cells was conducted; it has been showed that the cells and the microparticles formed a three-dimensional structure, known as spheroids, in the wells. The aim is to create a surface that closely resembles the morphology of cells on the microparticles, potentially enhancing cell-substrate interactions and influencing stem cell fate. In addition, applying these topographical features to PLGA microparticles used as building block biomaterial will introduce a three-dimensional response, thus closely mimicking the physiological conditions, rather than the conventional two-dimensional setting often used in similar studies.File | Dimensione | Formato | |
---|---|---|---|
Berti_Federico.pdf.pdf
accesso riservato
Dimensione
4.29 MB
Formato
Adobe PDF
|
4.29 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/66489