In the presence of a disease or bone defect, an imbalance occurs between resorption and deposition of bone tissue, resulting in increased structural fragility. Conditions such as osteoporosis and osteoarthritis, or the onset of neoplasms, make the bone less able to bear physiological loads. Among the solutions explored in the field of Bone Tissue Engineering for bone tissue repair or replacement, various compositions of bioglass have been studied in recent years. Bioglass is a highly bioactive bioceramic material with osteogenic properties similar to the natural bone. Silicone polymers are currently widely used as precursors to produce bioglass through photopolymerization exploiting the presence of silicone, which can react with the photosensitive resin. The aim of this work is to optimize nanocomposite scaffolds of bioglass/carbon (70S30C) obtained through advanced stereolithography starting from silica and calcium precursors. In this regard a mixture of resin, salts, silica, and silicone underwent stereolithographic printing to achieve the desired gyroid scaffold based on a model with 85% of porosity. A limitation of this printing technology is that in the presence of an insufficiently homogeneous ink, larger particles dissolve in favor of smaller ones (coarsening effect), causing scattering of the incident UV light. Additionally, there is a risk of over-lamination of the resin during printing due to the presence of an overly viscous mixture: since it is unable to flow completely, the excess of material deposits on already polymerized layers and it is then further sintered. Efforts were made in this work to optimize these aspects by creating a homogeneous mixture derived from the simple combination of an 'oily phase' (consisting of photosensitive resin and silicone) and a 'water phase' (represented by calcium salts and silica). Regarding the viscosity aspect, traditional stereolithography was tested with the print head heated up to approximately 40°C. The results obtained were compared with those of the traditional technique to assess any benefits of the first procedure. The scaffolds were obtained according to a theoretical model with a topologically defined gyroid structure and 85% of porosity. The gyroids obtained from the prints were subsequently subjected to heat treatment in nitrogen at 700°C in order to obtain the amorphous ceramic material of interest for further analysis. The residual powders were first subjected to mineral phase analysis via XRD and then to true density evaluations with a helium pycnometer. The whole scaffolds were also subjected to the latter analysis, obtaining a measure of apparent density that considers only closed porosity. As a final analysis, the thermally treated scaffolds underwent uniaxial compression tests to evaluate their mechanical strength. Although the percentages of porosity obtained are still far from the expected values defined by the theoretical model (85%), the results overall showed benefits from using a higher temperature compared to the traditional method - especially in terms of mixture homogeneity, open porosity, compressive strength and XRD mineralogical analysis.
In presenza di una malattia o un difetto osseo si registra uno squilibrio tra azione di riassorbimento e deposizione di tessuto, con conseguente aumento della fragilità strutturale. Patologie come l’osteoporosi e l’osteoartrite o l’insorgenza di neoplasie rendono l’osso meno adatto a tollerare i carichi fisiologici. Tra le soluzioni ricercate nel campo della Bone Tissue Engineering per la riparazione o sostituzione del tessuto osseo, negli ultimi anni sono state studiate diverse composizioni di biovetri, materiali bioceramici altamente bioattivi e con proprietà osteogeniche simili a quelle dell’osso naturale. Ad oggi i polimeri siliconici vengono ampiamente utilizzati come precursori per produrre biovetri tramite fotopolimerizzazione, sfruttando la presenza del silicone che è in grado di reagire con la resina fotosensibile. Lo scopo di questa tesi è quello di ottimizzare scaffold nanocompositi di biovetro/carbonio (70S30C) ottenuti tramite stereolitografia avanzata partendo da precursori di silice e calcio. A questo proposito una miscela di resina, sali, silice e silicone è stata sottoposta a stampa stereolitografica al fine di ottenere lo scaffold a giroide desiderato partendo da un modello con porosità dell’85%. Un limite di questa tecnologia di stampa è costituito dal fatto che in presenza di una miscela non sufficientemente omogenea le particelle più grandi si dissolvono a favore di quelle più piccole (effetto di coarsening), causando scattering della luce UV incidente. A questo si associa inoltre il rischio di sovra laminazione della resina durante la stampa, causata dalla presenza di una miscela troppo viscosa: non riuscendo a fluire completamente, sugli strati già polimerizzati si deposita materiale in eccesso che viene ulteriormente sinterizzato. In questo lavoro di tesi si è cercato di ottimizzare questi aspetti creando una miscela omogenea che deriva dalla semplice unione di una ‘fase oleosa’ (costituita da resina fotosensibile e silicone) e una ‘fase acquosa’ (rappresentata invece da sali di calcio e silice). Per quanto riguarda invece l’aspetto della viscosità è stato testato l’utilizzo della stereolitografia tradizionale in cui però la testina di stampa è stata scaldata fino a circa 40°C (stampa ‘a caldo’). I risultati ottenuti sono stati confrontati con quelli della tecnica tradizionale al fine di valutare la presenza di eventuali benefici legati alla prima procedura. Gli scaffold sono stati ottenuti in riferimento ad un modello teorico con una struttura a giroide topologicamente definita e una porosità dell’85%. I giroidi ricavati dalle stampe sono stati in seguito sottoposti a trattamento termico in azoto a 700°C per ottenere il materiale ceramico amorfo di interesse da sottoporre alle ulteriori analisi. I residui di polveri sono stati sottoposti prima ad analisi delle fasi mineralogiche tramite XRD ed in seguito a valutazioni della densità vera (true density) con il picnometro a elio. Anche gli scaffold interi sono stati oggetto di quest’ultima analisi, ricavando una misura di densità apparente che tiene conto soltanto della porosità chiusa. Come ultima analisi gli scaffold trattati termicamente sono stati sottoposti a prove di compressione uniassiale, al fine di valutarne la resistenza meccanica. Nonostante le percentuali di porosità ottenuti risultino essere ancora lontane da quelle attese definite dal modello teorico (85%), i risultati hanno mostrato complessivamente dei benefici nell’utilizzo della stampa a caldo rispetto a quella tradizionale - soprattutto in termini di omogeneità della miscela, porosità aperta, resistenza a compressione ed analisi mineralogica XRD.
Ottimizzazione di scaffold nanocompositi biovetro/carbonio da stereolitografia di emulsioni a base siliconica
TRESOLDI, FRANCESCA
2023/2024
Abstract
In the presence of a disease or bone defect, an imbalance occurs between resorption and deposition of bone tissue, resulting in increased structural fragility. Conditions such as osteoporosis and osteoarthritis, or the onset of neoplasms, make the bone less able to bear physiological loads. Among the solutions explored in the field of Bone Tissue Engineering for bone tissue repair or replacement, various compositions of bioglass have been studied in recent years. Bioglass is a highly bioactive bioceramic material with osteogenic properties similar to the natural bone. Silicone polymers are currently widely used as precursors to produce bioglass through photopolymerization exploiting the presence of silicone, which can react with the photosensitive resin. The aim of this work is to optimize nanocomposite scaffolds of bioglass/carbon (70S30C) obtained through advanced stereolithography starting from silica and calcium precursors. In this regard a mixture of resin, salts, silica, and silicone underwent stereolithographic printing to achieve the desired gyroid scaffold based on a model with 85% of porosity. A limitation of this printing technology is that in the presence of an insufficiently homogeneous ink, larger particles dissolve in favor of smaller ones (coarsening effect), causing scattering of the incident UV light. Additionally, there is a risk of over-lamination of the resin during printing due to the presence of an overly viscous mixture: since it is unable to flow completely, the excess of material deposits on already polymerized layers and it is then further sintered. Efforts were made in this work to optimize these aspects by creating a homogeneous mixture derived from the simple combination of an 'oily phase' (consisting of photosensitive resin and silicone) and a 'water phase' (represented by calcium salts and silica). Regarding the viscosity aspect, traditional stereolithography was tested with the print head heated up to approximately 40°C. The results obtained were compared with those of the traditional technique to assess any benefits of the first procedure. The scaffolds were obtained according to a theoretical model with a topologically defined gyroid structure and 85% of porosity. The gyroids obtained from the prints were subsequently subjected to heat treatment in nitrogen at 700°C in order to obtain the amorphous ceramic material of interest for further analysis. The residual powders were first subjected to mineral phase analysis via XRD and then to true density evaluations with a helium pycnometer. The whole scaffolds were also subjected to the latter analysis, obtaining a measure of apparent density that considers only closed porosity. As a final analysis, the thermally treated scaffolds underwent uniaxial compression tests to evaluate their mechanical strength. Although the percentages of porosity obtained are still far from the expected values defined by the theoretical model (85%), the results overall showed benefits from using a higher temperature compared to the traditional method - especially in terms of mixture homogeneity, open porosity, compressive strength and XRD mineralogical analysis.File | Dimensione | Formato | |
---|---|---|---|
Tresoldi_Francesca.pdf
accesso riservato
Dimensione
9.08 MB
Formato
Adobe PDF
|
9.08 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/66520