The past few decades have seen substantial growth in Additive Manufacturing (AM) technologies. It originated as a technology for rapid prototyping in product development process because of its advantages in terms of reducing in prototyping times and costs, increasing of the possible design iterations, and increasing functionality testing. This means shortening the design cycle and reducing time-to-market. Moreover, as a result of the improvement in the quality of the output from these machines due to increased accuracy, material properties, technological improvements, many parts are now directly manufactured with these machines, and the term “prototype” no longer fits. Nowadays, 3D printing is used in many fields such as aerospace, automotive, and many others including pharmaceutical sector. It is precisely in this sector that it allows the printing of personalized tablets according to the patient’s needs. AM provide the unique and important opportunity for printing tablets with accelerated release characteristic, adjustable and personalized dosage forms. The most common AM process is called Fused Filament Fabrication (FFF), which uses thermoplastic filaments as build material. This technology was used in this thesis project, but the printer, a Prusa iMK3S+, was modified with a pellet system. The advantage is that the mechanical properties of the filament are not required, which must be stiff to avoid buckling and not brittle, otherwise it will break; by using pellets, these challenges are overcome and flexibility in optimizing the drug release profile of the printed tablets is increased. The material consists of a carrier polymer called “Soluplus®” (40%) and a loaded active pharmaceutical ingredient “Theophylline” (60%). First is produced the filament, using the hot melt extrusion technology that has the advantage of making a homogeneous solid dispersion, and then pellets are obtained using a shredder. The goal was to optimize the tablets printing process by finding a minimum and maximum temperature range below which the material does not flow and above which it degrades, and an optimal flow rate. By characterizing the tablets, the effect of the "infill" and "overlap" parameters will also be evaluated, and that by changing the print settings, tablet doses can be changed by varying the weight and keeping the size unchanged.

Negli ultimi decenni si è assistito a una crescita sostanziale delle tecnologie di Additive Manufacturing (AM). È nata come tecnologia per la prototipazione rapida nel processo di sviluppo del prodotto, grazie ai suoi vantaggi in termini di riduzione dei tempi e dei costi di prototipazione, di aumento delle possibili iterazioni di progettazione e di incremento dei test di funzionalità. Ciò significa abbreviare il ciclo di progettazione e ridurre il time-to-market. Inoltre, grazie al miglioramento della qualità dei risultati ottenuti da queste macchine, dovuto alla maggiore precisione, alle proprietà dei materiali, ai miglioramenti tecnologici, molte parti sono ora prodotte direttamente con queste macchine e il termine "prototipo" non è più adatto. Al giorno d'oggi, la stampa 3D è utilizzata in numerosi settori, tra cui quello farmaceutico. È proprio in questo settore che permette di stampare compresse personalizzate in base alle esigenze del paziente. Offre l'opportunità di stampare compresse con caratteristiche di rilascio accelerato, forme di dosaggio regolabili e personalizzate. Il processo AM più comune è chiamato Fused Filament Fabrication (FFF), che utilizza filamenti termoplastici come materiale di costruzione. Nel progetto di tesi è stata utilizzata questa tecnologia, ma la stampante, una Prusa iMK3S+, è stata modificata con un sistema a pellet. Il vantaggio è che non sono richieste le proprietà meccaniche del filamento, che non deve essere fragile e non deve deformarsi. Utilizzando i pellet, queste sfide sono superate e la flessibilità nell'ottimizzare il profilo di rilascio del farmaco delle compresse stampate è maggiore. Il materiale è costituito da un polimero, "Soluplus®" (40%), e da un principio attivo farmaceutico, "Teofillina" (60%). Il filamento è stato prodotto utilizzando la tecnologia dell'estrusione a caldo che ha il vantaggio di produrre una dispersione solida omogenea, e poi sono stati ottenuti i pellet utilizzando un trituratore. L'obiettivo è stato ottimizzare lo stampaggio delle compresse trovando un intervallo di temperatura minimo e massimo al di sotto del quale il materiale non fluisce e al di sopra del quale si degrada, e una portata ottimale. Caratterizzando le compresse verrà valutato anche l’effetto dei parametri “infill” e “overlap”, e che, cambiando le impostazioni di stampa, le dosi delle compresse possono essere modificate variando il peso e mantenendo inalterate le dimensioni.

Optimizing a pellet-based FDM process for pharmaceutical tablets production

PERONI, GIORGIO
2023/2024

Abstract

The past few decades have seen substantial growth in Additive Manufacturing (AM) technologies. It originated as a technology for rapid prototyping in product development process because of its advantages in terms of reducing in prototyping times and costs, increasing of the possible design iterations, and increasing functionality testing. This means shortening the design cycle and reducing time-to-market. Moreover, as a result of the improvement in the quality of the output from these machines due to increased accuracy, material properties, technological improvements, many parts are now directly manufactured with these machines, and the term “prototype” no longer fits. Nowadays, 3D printing is used in many fields such as aerospace, automotive, and many others including pharmaceutical sector. It is precisely in this sector that it allows the printing of personalized tablets according to the patient’s needs. AM provide the unique and important opportunity for printing tablets with accelerated release characteristic, adjustable and personalized dosage forms. The most common AM process is called Fused Filament Fabrication (FFF), which uses thermoplastic filaments as build material. This technology was used in this thesis project, but the printer, a Prusa iMK3S+, was modified with a pellet system. The advantage is that the mechanical properties of the filament are not required, which must be stiff to avoid buckling and not brittle, otherwise it will break; by using pellets, these challenges are overcome and flexibility in optimizing the drug release profile of the printed tablets is increased. The material consists of a carrier polymer called “Soluplus®” (40%) and a loaded active pharmaceutical ingredient “Theophylline” (60%). First is produced the filament, using the hot melt extrusion technology that has the advantage of making a homogeneous solid dispersion, and then pellets are obtained using a shredder. The goal was to optimize the tablets printing process by finding a minimum and maximum temperature range below which the material does not flow and above which it degrades, and an optimal flow rate. By characterizing the tablets, the effect of the "infill" and "overlap" parameters will also be evaluated, and that by changing the print settings, tablet doses can be changed by varying the weight and keeping the size unchanged.
2023
Optimizing a pellet-based FDM process for pharmaceutical tablets production
Negli ultimi decenni si è assistito a una crescita sostanziale delle tecnologie di Additive Manufacturing (AM). È nata come tecnologia per la prototipazione rapida nel processo di sviluppo del prodotto, grazie ai suoi vantaggi in termini di riduzione dei tempi e dei costi di prototipazione, di aumento delle possibili iterazioni di progettazione e di incremento dei test di funzionalità. Ciò significa abbreviare il ciclo di progettazione e ridurre il time-to-market. Inoltre, grazie al miglioramento della qualità dei risultati ottenuti da queste macchine, dovuto alla maggiore precisione, alle proprietà dei materiali, ai miglioramenti tecnologici, molte parti sono ora prodotte direttamente con queste macchine e il termine "prototipo" non è più adatto. Al giorno d'oggi, la stampa 3D è utilizzata in numerosi settori, tra cui quello farmaceutico. È proprio in questo settore che permette di stampare compresse personalizzate in base alle esigenze del paziente. Offre l'opportunità di stampare compresse con caratteristiche di rilascio accelerato, forme di dosaggio regolabili e personalizzate. Il processo AM più comune è chiamato Fused Filament Fabrication (FFF), che utilizza filamenti termoplastici come materiale di costruzione. Nel progetto di tesi è stata utilizzata questa tecnologia, ma la stampante, una Prusa iMK3S+, è stata modificata con un sistema a pellet. Il vantaggio è che non sono richieste le proprietà meccaniche del filamento, che non deve essere fragile e non deve deformarsi. Utilizzando i pellet, queste sfide sono superate e la flessibilità nell'ottimizzare il profilo di rilascio del farmaco delle compresse stampate è maggiore. Il materiale è costituito da un polimero, "Soluplus®" (40%), e da un principio attivo farmaceutico, "Teofillina" (60%). Il filamento è stato prodotto utilizzando la tecnologia dell'estrusione a caldo che ha il vantaggio di produrre una dispersione solida omogenea, e poi sono stati ottenuti i pellet utilizzando un trituratore. L'obiettivo è stato ottimizzare lo stampaggio delle compresse trovando un intervallo di temperatura minimo e massimo al di sotto del quale il materiale non fluisce e al di sopra del quale si degrada, e una portata ottimale. Caratterizzando le compresse verrà valutato anche l’effetto dei parametri “infill” e “overlap”, e che, cambiando le impostazioni di stampa, le dosi delle compresse possono essere modificate variando il peso e mantenendo inalterate le dimensioni.
tablet
3D printing
pellet-based FDM
pharmaceutical
File in questo prodotto:
File Dimensione Formato  
Peroni_Giorgio.pdf

accesso riservato

Dimensione 25 MB
Formato Adobe PDF
25 MB Adobe PDF

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/66866