Bone tissue has the ability to self-repair through the process of bone remodeling, but when large defects occur, this natural capacity is insufficient for complete structural and functional recovery. In such cases, bone grafting becomes necessary, but the main limitation is the limited availability, particularly with the increasing number of bone defects linked to an aging population. To address these challenges, bone tissue engineering (BTE) has developed bone substitutes that initially replace damaged tissue and later guide its regeneration, degrading to make way for new bone formation. In this thesis, scaffolds for bone regeneration were created, featuring a biodegradable biomaterial arranged in an open, interconnected porous structure that ensures bioactivity and appropriate mechanical properties. Hydroxyapatite (HA), β-tricalcium phosphate (β-TCP) and a mixture of the two were chosen as biomaterials for their strength, lightness and bioactivity. Several triply periodic minimal surface (TPMS) structures– specifically Neovius, Gyroid, Diamond, Primitive and IWP– were studied due to their modifiable geometry and significant strength. The scaffolds were produced from 3D geometric models using an additive manufacturing technique called Digital Light Processing (DLP), followed by heat treatment. The scaffolds underwent geometric measurements, density evaluations and surface analyses to assess print quality and the effects of heat treatment. The results indicated that the printing parameters used provided good quality with open porosity comparable to the geometric models, while heat treatment caused material-dependent shrinkage due to varying residual microporosity. Additionally, the powders showed stability during heat treatment, with partial conversion of HA to β-TCP in the mixed composition. Uniaxial compression tests were then conducted in various stress directions and the application of the Gibson-Ashby model allowed the evaluation of the apparent bending strength. The data revealed that composition influences structural behavior: β-TCP structures were less resistant along the print direction, HA structures exhibited isotropic behavior and mixed compositions showed structure-dependent behavior. Comparing the materials, HA offered significantly lower strength compared to β-TCP and their mixture, though the mixture outperformed β-TCP in certain structures. Among the structures, Neovius emerged as the strongest, particularly when made with the mixed composition, exhibiting isotropic behavior and a strength exceeding 2.5 times that of bone. This scaffold is a strong candidate as a bone substitute.
Nel caso di difetti, provocati da patologie o traumi, il tessuto osseo risulta capace di autoripararsi attraverso il processo di rimodellamento, ma quando i difetti hanno dimensioni rilevanti, tale capacità non è sufficiente per un completo recupero strutturale e funzionale. In questi casi, diventa necessario il trapianto osseo, la cui principale limitazione è la scarsa disponibilità, in particolare con l'aumento di difetti ossei dovuto all'invecchiamento della popolazione. Per superare questa sfida, l'ingegneria del tessuto osseo ha sviluppato sostituti che inizialmente sostituiscono il tessuto danneggiato e successivamente ne guidano la rigenerazione, degradandosi per fare spazio alla formazione di nuovo osso. In questa tesi, sono stati creati degli scaffold per la rigenerazione ossea, caratterizzati da un biomateriale biodegradabile disposto in una struttura tridimensionale con una porosità aperta ed interconnessa, che assicurano bioattività e proprietà meccaniche adeguate. L'idrossiapatite (HA), il β-fosfato tricalcico (β-TCP) e una miscela dei due sono stati scelti come biomateriali per la loro resistenza, leggerezza e bioattività. Sono state studiate diverse strutture a superficie minima tripla periodica (Triply Periodic Minimal Surface, TPMS), in particolare Neovius, Gyroid, Diamond, Primitive e IWP, per la loro notevole resistenza, porosità e geometria adattabile. Gli scaffold sono stati prodotti a partire da modelli geometrici 3D utilizzando una tecnica di produzione additiva chiamata Digital Light Processing (DLP), seguita da un trattamento termico. Gli scaffold sono stati sottoposti a misurazioni geometriche, valutazioni di densità e analisi superficiali per valutare la qualità di stampa e gli effetti del trattamento termico. I risultati hanno indicato che i parametri di stampa utilizzati hanno fornito una buona qualità, con porosità aperta comparabile ai modelli geometrici, mentre il trattamento termico ha causato un restringimento volumetrico dipendente dal materiale a causa della varia microporosità residua. Inoltre, le polveri hanno mostrato stabilità durante il trattamento termico, con una parziale conversione da HA a β-TCP nella composizione mista. Successivamente, sono stati condotti test di compressione uniassiale lungo varie direzioni di sollecitazione e l'applicazione del modello di Gibson-Ashby ha permesso la valutazione della resistenza apparente alla flessione. I dati hanno rivelato che la composizione influenza il comportamento strutturale: le strutture in β-TCP erano meno resistenti lungo la direzione di stampa, le strutture in HA hanno mostrato un comportamento isotropo e le composizioni miste hanno mostrato un comportamento dipendente dalla struttura. Confrontando i materiali, l'HA ha offerto una resistenza inferiore rispetto al β-TCP e alla loro miscela, sebbene la miscela abbia superato il β-TCP in alcune strutture. Tra le strutture, Neovius è emersa come la più resistente, in particolare quando realizzata con la composizione mista, mostrando un comportamento isotropo e una resistenza superiore di oltre 2,5 volte rispetto all'osso.
Mechanical characterization of triply periodic minimal surface (TPMS) structures in tricalcium phosphate and hydroxyapatite for bone tissue engineering
VERLATO, GIULIA
2023/2024
Abstract
Bone tissue has the ability to self-repair through the process of bone remodeling, but when large defects occur, this natural capacity is insufficient for complete structural and functional recovery. In such cases, bone grafting becomes necessary, but the main limitation is the limited availability, particularly with the increasing number of bone defects linked to an aging population. To address these challenges, bone tissue engineering (BTE) has developed bone substitutes that initially replace damaged tissue and later guide its regeneration, degrading to make way for new bone formation. In this thesis, scaffolds for bone regeneration were created, featuring a biodegradable biomaterial arranged in an open, interconnected porous structure that ensures bioactivity and appropriate mechanical properties. Hydroxyapatite (HA), β-tricalcium phosphate (β-TCP) and a mixture of the two were chosen as biomaterials for their strength, lightness and bioactivity. Several triply periodic minimal surface (TPMS) structures– specifically Neovius, Gyroid, Diamond, Primitive and IWP– were studied due to their modifiable geometry and significant strength. The scaffolds were produced from 3D geometric models using an additive manufacturing technique called Digital Light Processing (DLP), followed by heat treatment. The scaffolds underwent geometric measurements, density evaluations and surface analyses to assess print quality and the effects of heat treatment. The results indicated that the printing parameters used provided good quality with open porosity comparable to the geometric models, while heat treatment caused material-dependent shrinkage due to varying residual microporosity. Additionally, the powders showed stability during heat treatment, with partial conversion of HA to β-TCP in the mixed composition. Uniaxial compression tests were then conducted in various stress directions and the application of the Gibson-Ashby model allowed the evaluation of the apparent bending strength. The data revealed that composition influences structural behavior: β-TCP structures were less resistant along the print direction, HA structures exhibited isotropic behavior and mixed compositions showed structure-dependent behavior. Comparing the materials, HA offered significantly lower strength compared to β-TCP and their mixture, though the mixture outperformed β-TCP in certain structures. Among the structures, Neovius emerged as the strongest, particularly when made with the mixed composition, exhibiting isotropic behavior and a strength exceeding 2.5 times that of bone. This scaffold is a strong candidate as a bone substitute.File | Dimensione | Formato | |
---|---|---|---|
Verlato_Giulia.pdf
accesso riservato
Dimensione
13.23 MB
Formato
Adobe PDF
|
13.23 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/69350