The use of composite materials, particularly carbon fiber-reinforced polymer (CFRP) composites, is steadily growing in the field of mobility. These materials are considered the benchmark for the construction of hydrogen storage tanks, where hydrogen is stored at cryogenic temperatures. Therefore, it is essential to investigate and enhance the properties of these materials, through the addition of reinforcing nanoparticles in the matrix, to provide effective support tools for future design. The thesis aims to highlight the behavior of CFRP and nano-modified CFRP, evaluating the evolution of fracture toughness properties as temperature decreases, and identifying any benefits provided by the nanoparticles. Chapter 1 reviews the existing literature. It begins with a brief introduction to composite materials, particularly CFRP, emphasizing the damage evolution mechanisms that characterize them, and then discusses how these mechanisms are expanded by introducing reinforcing particles into the matrix. A discussion of fracture mechanics is also necessary to understand the results and the testing methods employed. Finally, the chapter reports on what is available in the literature regarding the effect of temperature on the polymer matrix, composites, and nano-modified composites. Chapter 2 describes the tests conducted and the tools used. Chapter 3 provides a detailed description of the methodology used for material fabrication, and finally, Chapter 4 presents the tested data, explaining the results obtained through the analysis of the findings and the observation of fracture surfaces. The thesis demonstrates that there is a beneficial, though not absolute, effect in terms of improved fracture toughness when using nano-reinforced composites. The most significant result is the general increase in fracture toughness at low temperatures for the materials in question, both nano-modified and non-modified
L’impiego dei materiali compositi, ed in particolare i compositi a matrice polimerica rinforzati con fibra di carbonio (CFRP), nell’ambito della mobilità risulta al giorno d’oggi in continua crescita. Essi vengono considerati il riferimento nella realizzazioni di serbatoi contenenti idrogeno, il quale viene stoccato a temperature criogeniche. Pertanto è necessario investigare, e migliorare grazie all’aggiunta di nanoparticelle di rinforzo nella matrice, le proprietà di questi materiali in modo tale da garantire degli adeguati strumenti di supporto alla progettazione futura. La tesi si pone l’obbiettivo di evidenziare il comportamento dei CFRP e dei CFRP nano modificati, valutando l’evoluzione delle proprietà di tenacità a frattura al diminuire della temperatura, evidenziando eventuali benefici garantiti dalle nano particelle. Nel Capitolo 1 viene analizzata la letteratura. Innanzitutto si intende introdurre brevemente i materiali compositi ed in particolare i CFRP, evidenziando i meccanismi di evoluzione del danno che li caratterizzano per poi sottolineare come questi vengano ampliati introducendo delle particelle di rinforzo all’interno della matrice. Cenni alla meccanica della frattura sono inoltre necessari alla comprensione dei risultati e le modalità dei test che sono state eseguite. Infine si riporta quanto disponibile in letteratura riguardo l’effetto della temperatura sulla matrice polimerica, sui compositi e sui compositi nano modificati. Il Capitolo 2 intende descrivere i test eseguiti e gli strumenti impiegati. Il Capitolo 3 descrive in modo accurato la metodologia utilizzata per la realizzazione del materiale ed infine nel Capitolo 4 si presentano i dati, motivando quanto ottenuto grazie all’analisi dei risultati e all’osservazione delle superfici di frattura. La tesi dimostra come ci sia un effetto benefico, anche se in modo non assoluto, in termini di miglioramento della tenacità a frattura nell’impiego di compositi nano rinforzati. Il risultato più evidente è il generale aumento della tenacità a frattura a bassa temperatura per il materiali prodotti in questione, nano-modificato e non-modificato.
Fracture response of nanomodified CFRP at low temperatures
BORTOLI, ALEX
2023/2024
Abstract
The use of composite materials, particularly carbon fiber-reinforced polymer (CFRP) composites, is steadily growing in the field of mobility. These materials are considered the benchmark for the construction of hydrogen storage tanks, where hydrogen is stored at cryogenic temperatures. Therefore, it is essential to investigate and enhance the properties of these materials, through the addition of reinforcing nanoparticles in the matrix, to provide effective support tools for future design. The thesis aims to highlight the behavior of CFRP and nano-modified CFRP, evaluating the evolution of fracture toughness properties as temperature decreases, and identifying any benefits provided by the nanoparticles. Chapter 1 reviews the existing literature. It begins with a brief introduction to composite materials, particularly CFRP, emphasizing the damage evolution mechanisms that characterize them, and then discusses how these mechanisms are expanded by introducing reinforcing particles into the matrix. A discussion of fracture mechanics is also necessary to understand the results and the testing methods employed. Finally, the chapter reports on what is available in the literature regarding the effect of temperature on the polymer matrix, composites, and nano-modified composites. Chapter 2 describes the tests conducted and the tools used. Chapter 3 provides a detailed description of the methodology used for material fabrication, and finally, Chapter 4 presents the tested data, explaining the results obtained through the analysis of the findings and the observation of fracture surfaces. The thesis demonstrates that there is a beneficial, though not absolute, effect in terms of improved fracture toughness when using nano-reinforced composites. The most significant result is the general increase in fracture toughness at low temperatures for the materials in question, both nano-modified and non-modifiedFile | Dimensione | Formato | |
---|---|---|---|
THESIS_Bortoli.pdf
accesso riservato
Dimensione
17.36 MB
Formato
Adobe PDF
|
17.36 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/69368