This thesis presents a study conducted on the design and implementation of a sensorless control approach for an exoskeleton system intended for human rehabilitation. The primary objective is to propose an accessible and simplified rehabilitation method that supports static and dynamic exercises in the x and y spatial directions. We would also construct a lightweight and portable system. Achieving this requires meticulous research into the selection of components, such as actuators, and materials for the system’s structure. In addition, the sensorless control approach is proposed to minimize issues related to error feedback and ensure a high level of safety for users; this requires studying the phenomena acting on the system and deriving a mathematical model to represent them, as accurately as possible. The thesis is organized into the following chapters. Chapter 1 introduces the role of robots in daily life and in various work areas, such as industrial and medical fields. Then, it presents different exoskeleton structures and rehabilitation approaches. Finally, it defines the main project objectives. Chapter 2 offers an overview of different exoskeleton systems available, with a focus on those for rehabilitation. In addition, this chapter defines the system by deriving its kinematics and dynamics through mathematical equations. Chapter 3 illustrates the system components. It presents a detailed overview of the chosen actuators and structure, highlighting the motor type, its characteristics, and the associated advantages and disadvantages. Chapter 4 is focused on the control design. First, it presents the exercises to be performed. Then, after an overview of the available control approaches, it exposes the proposed sensorless controls, covering the theoretical background of the algorithms and their implementation. Additionally, it provides the necessary discretization process. Chapter 5 studies the friction phenomena in mechanical components and presents the estimation methods used. This chapter discusses frictional forces, how they change, how they arise, how they can be represented, and their impact on the system’s performance. Chapter 6 presents the experimental results collected to validate the effectiveness of the implemented controls. Chapter 7 summarizes the goals achieved in the project and provides ideas for further improvement and development. Beyond presenting these ideas, it describes a possible solution for each proposed improvement.
Questa tesi presenta uno studio sulla progettazione e implementazione con un approccio di controllo sensoreless su un esoscheletro destinato alla riabilitazione umana. L'obiettivo principale è proporre un metodo di riabilitazione accessibile e semplificato che supporti esercizi statici e dinamici nelle direzioni spaziali x e y. Si mira anche a costruire un sistema leggero e portatile. Per raggiungere questo obiettivo, è necessaria una ricerca meticolosa sulla selezione dei componenti, come gli attuatori, e dei materiali per la struttura del sistema. Inoltre, l'approccio di controllo sensorless è proposto per minimizzare i problemi legati al feedback degli errori e garantire un alto livello di sicurezza per gli utenti; ciò richiede lo studio dei fenomeni che agiscono sul sistema e la derivazione di un modello matematico per rappresentarli nel modo più accurato possibile. La tesi è organizzata nei seguenti capitoli. Il Capitolo 1 introduce il ruolo dei robot nella vita quotidiana e in vari ambiti lavorativi, come i settori industriale e medico. Successivamente, presenta diverse strutture di esoscheletri e approcci alla riabilitazione. Infine, definisce gli obiettivi principali del progetto. Il Capitolo 2 offre una panoramica dei diversi sistemi di esoscheletri disponibili, con un focus su quelli per la riabilitazione. Inoltre, questo capitolo definisce il sistema derivandone la cinematica e la dinamica attraverso equazioni matematiche. Il Capitolo 3 illustra i componenti del sistema. Presenta una panoramica dettagliata degli attuatori e della struttura scelti, evidenziando il tipo di motore, le sue caratteristiche e i vantaggi e svantaggi associati. Il Capitolo 4 è incentrato sulla progettazione del controllo. Prima, vengono presentati gli esercizi da eseguire. Poi, dopo una panoramica degli approcci di controllo disponibili, vengono descritte le tipologie di controllo sensorless proposte, trattando il background teorico degli algoritmi e la loro implementazione. Inoltre, fornisce il processo di discretizzazione necessario. Il Capitolo 5 studia i fenomeni di attrito nei componenti meccanici e presenta i metodi di stima utilizzati. Questo capitolo discute come cambiano, come si manifestano, come possono essere rappresentate e il loro impatto sulle prestazioni del sistema. Il Capitolo 6 presenta i risultati sperimentali raccolti per validare l'efficacia dei controlli implementati. Il Capitolo 7 riassume gli obiettivi raggiunti nel progetto e fornisce idee per ulteriori miglioramenti e sviluppi. Oltre a presentare queste idee, descrive una possibile soluzione per ciascun miglioramento proposto.
Application of DOB & RTOB in Sensorless Control of an Upper Limb Exoskeleton
TOFFANO, FILIPPO
2023/2024
Abstract
This thesis presents a study conducted on the design and implementation of a sensorless control approach for an exoskeleton system intended for human rehabilitation. The primary objective is to propose an accessible and simplified rehabilitation method that supports static and dynamic exercises in the x and y spatial directions. We would also construct a lightweight and portable system. Achieving this requires meticulous research into the selection of components, such as actuators, and materials for the system’s structure. In addition, the sensorless control approach is proposed to minimize issues related to error feedback and ensure a high level of safety for users; this requires studying the phenomena acting on the system and deriving a mathematical model to represent them, as accurately as possible. The thesis is organized into the following chapters. Chapter 1 introduces the role of robots in daily life and in various work areas, such as industrial and medical fields. Then, it presents different exoskeleton structures and rehabilitation approaches. Finally, it defines the main project objectives. Chapter 2 offers an overview of different exoskeleton systems available, with a focus on those for rehabilitation. In addition, this chapter defines the system by deriving its kinematics and dynamics through mathematical equations. Chapter 3 illustrates the system components. It presents a detailed overview of the chosen actuators and structure, highlighting the motor type, its characteristics, and the associated advantages and disadvantages. Chapter 4 is focused on the control design. First, it presents the exercises to be performed. Then, after an overview of the available control approaches, it exposes the proposed sensorless controls, covering the theoretical background of the algorithms and their implementation. Additionally, it provides the necessary discretization process. Chapter 5 studies the friction phenomena in mechanical components and presents the estimation methods used. This chapter discusses frictional forces, how they change, how they arise, how they can be represented, and their impact on the system’s performance. Chapter 6 presents the experimental results collected to validate the effectiveness of the implemented controls. Chapter 7 summarizes the goals achieved in the project and provides ideas for further improvement and development. Beyond presenting these ideas, it describes a possible solution for each proposed improvement.File | Dimensione | Formato | |
---|---|---|---|
Toffano_Filippo.pdf
accesso aperto
Dimensione
21.07 MB
Formato
Adobe PDF
|
21.07 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/69369