Cyanobacteria are a phylum of bacteria that are biotechnologically relevant due to their ability to grow autotrophically, heterotrophically, and mixotrophically, their natural competence in integrating exogenous DNA, and, notably, the efficiency of their homologous recombination mechanism. For these reasons, research in the fields of synthetic biology and metabolic engineering is increasingly focusing on these microorganisms for industrial applications. The growing interest in using cyanobacteria as hosts for biocatalysis has also revealed their potential as a sustainable and eco-friendly resource for the production of various molecules, such as pharmaceuticals. In this context, the present thesis project aims to develop a process based on transgenic strains of Synechocystis sp. PCC6803 for the production of Salidroside, a biomolecule of great pharmaceutical interest. This work is structured around three main objectives. Initially, the goal was to research for the most efficient Baeyer-Villiger monooxygenase enzyme in vivo by comparing the activity of two previously isolated transgenic strains of Synechocystis expressing respectively two different BVMOs derived from two photosynthetic organisms, CmBVMO (from Cyanidioschyzon merolae) and PpBVMO (from Physcomitrella patens). These enzymes catalyze the production of 4-hydroxyphenyl ethyl acetate from the substrate 4-(4-hydroxyphenyl)-2-butanone, a reaction that is difficult to carry out with classic chemical synthesis methods. Following hydrolysis, the 4-hydroxyphenyl ethyl acetate leads to the formation of Tyrosol, a key intermediate for the production of Salidroside. Subsequently, after selecting the most efficient enzyme in vivo, whole-cell biotransformations were performed at various initial concentrations of 4-(4-hydroxyphenyl)-2-butanone in order to maximize the Tyrosol production yield and to verify how the starting concentration of the initial substrate affects the process. The third objective of this project was to obtain new stable transgenic Synechocystis strains capable of carrying out the entire biosynthetic process. For this purpose, new integrative vectors were produced to further engineer the transgenic strain Syn_SuperP_CmBVMO. Specifically, the aim of this engineering process is to introduce into the genome of Syn_SuperP_CmBVMO a new expression cassette containing the sequences encoding both the CmBVMO and UGT72B14, a UDP-Glycosyltransferase (UGT) isolated from Rhodiola sachalinensis, capable of catalyzing the glycosylation of Tyrosol, resulting in the formation of Salidroside.
I cianobatteri sono un phylum di batteri rilevanti a livello biotecnologico per la loro capacità di crescere in autotrofia, eterotrofia e mixotrofia, per la loro naturale competenza a integrare DNA esogeno e per l’efficienza del loro meccanismo di ricombinazione omologa. Per queste motivazioni, la ricerca nei settori della biologia sintetica e dell’ingegneria metabolica sta mostrando un interesse sempre maggiore verso questi microrganismi, specialmente per delle applicazioni a livello industriale. Inoltre, il crescente interesse verso l’uso dei cianobatteri come ospiti per la biocatalisi ha permesso di rivelarne il potenziale come risorsa sostenibile ed eco-compatibile per la produzione di diversi prodotti, come ad esempio composti a scopo farmaceutico. In questo contesto, il presente progetto di tesi si propone di sviluppare un processo basato su ceppi transgenici di Synechocystis sp. PCC6803 per la produzione della Salidroside, una biomolecola di grande interesse farmaceutico. Questo lavoro si struttura attorno a tre obiettivi principali. Inizialmente, è stato ricercato l’enzima Baeyer-Villiger monossigenasi (BVMO) più efficiente in vivo, confrontando l’attività di due diversi ceppi transgenici di Synechocystis precedentemente isolati che esprimono rispettivamente due BVMO diverse che derivano da due organismi fotosintetici, la CmBVMO (da Cyanidioschyzon merolae) e la PpBVMO (da Physcomitrella patens). Questi enzimi sono in grado di catalizzare la produzione di 4-idrossifenil-etil acetato a partire dal substrato 4-(4-idrossifenil)-2-butanone (o Raspberry ketone), una reazione difficile da condurre con i metodi classici di sintesi chimica. Il 4-idrossifenil-etil acetato, in seguito alla reazione di idrolisi, porta alla formazione del Tyrosol, intermedio fondamentale per la produzione della Salidroside. Successivamente, dopo aver selezionato l’enzima più efficiente in vivo, sono state effettuate delle biotrasformazioni in formato whole cell a diverse concentrazioni iniziali di 4-(4-idrossifenil)-2-butanone per massimizzare la resa di produzione di Tyrosol e verificare come la concentrazione del substrato iniziale influisce sul processo. Il terzo obiettivo di questo progetto è stato quello di ottenere nuovi ceppi transgenici stabili di Synechocystis in grado di eseguire l'intero processo biosintetico. Per questo sono stati prodotti nuovi vettori integrativi necessari per ingegnerizzare ulteriormente il ceppo transgenico Syn_SuperP_CmBVMO precedentemente isolato. Nello specifico, l’obiettivo di questa ingegnerizzazione è quello di introdurre nel genoma di Syn_SuperP_CmBVMO una nuova cassetta di espressione contenente le sequenze codificanti per la CmBVMO e l’UGT72B14, una UDP-glicosiltransferasi isolata da Rhodiola sachalinensis in grado di catalizzare la glicosilazione del Tyrosol con conseguente formazione di Salidroside.
Sviluppo di un processo biocatalitico in cianobatteri per la produzione di Salidroside
POMARETTI, RICCARDO
2023/2024
Abstract
Cyanobacteria are a phylum of bacteria that are biotechnologically relevant due to their ability to grow autotrophically, heterotrophically, and mixotrophically, their natural competence in integrating exogenous DNA, and, notably, the efficiency of their homologous recombination mechanism. For these reasons, research in the fields of synthetic biology and metabolic engineering is increasingly focusing on these microorganisms for industrial applications. The growing interest in using cyanobacteria as hosts for biocatalysis has also revealed their potential as a sustainable and eco-friendly resource for the production of various molecules, such as pharmaceuticals. In this context, the present thesis project aims to develop a process based on transgenic strains of Synechocystis sp. PCC6803 for the production of Salidroside, a biomolecule of great pharmaceutical interest. This work is structured around three main objectives. Initially, the goal was to research for the most efficient Baeyer-Villiger monooxygenase enzyme in vivo by comparing the activity of two previously isolated transgenic strains of Synechocystis expressing respectively two different BVMOs derived from two photosynthetic organisms, CmBVMO (from Cyanidioschyzon merolae) and PpBVMO (from Physcomitrella patens). These enzymes catalyze the production of 4-hydroxyphenyl ethyl acetate from the substrate 4-(4-hydroxyphenyl)-2-butanone, a reaction that is difficult to carry out with classic chemical synthesis methods. Following hydrolysis, the 4-hydroxyphenyl ethyl acetate leads to the formation of Tyrosol, a key intermediate for the production of Salidroside. Subsequently, after selecting the most efficient enzyme in vivo, whole-cell biotransformations were performed at various initial concentrations of 4-(4-hydroxyphenyl)-2-butanone in order to maximize the Tyrosol production yield and to verify how the starting concentration of the initial substrate affects the process. The third objective of this project was to obtain new stable transgenic Synechocystis strains capable of carrying out the entire biosynthetic process. For this purpose, new integrative vectors were produced to further engineer the transgenic strain Syn_SuperP_CmBVMO. Specifically, the aim of this engineering process is to introduce into the genome of Syn_SuperP_CmBVMO a new expression cassette containing the sequences encoding both the CmBVMO and UGT72B14, a UDP-Glycosyltransferase (UGT) isolated from Rhodiola sachalinensis, capable of catalyzing the glycosylation of Tyrosol, resulting in the formation of Salidroside.File | Dimensione | Formato | |
---|---|---|---|
Pomaretti_Riccardo.pdf.pdf
accesso riservato
Dimensione
1.93 MB
Formato
Adobe PDF
|
1.93 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/70250