The nitrogen cycle is a fundamental component of the biosphere, as this chemical element is a key constituent of macromolecules necessary for the survival of living organisms. Most nitrogen is found in the atmosphere as a gas, and this form is inaccessible to most living organisms. For this reason, the conversion of gaseous nitrogen into bioavailable forms is a crucial mechanism for the survival of living beings. Among the primary organisms responsible for fixing atmospheric nitrogen into assimilable forms are certain cyanobacteria, which are also capable of fixing atmospheric carbon through a process called photosynthesis. These are therefore known as photosynthetic nitrogen-fixing microorganisms. In these organisms, the carbon cycle and the nitrogen cycle are closely interdependent. Carbon fixation produces sugars that are used in nitrogen metabolism as carbon skeletons for its assimilation. Additionally, it contributes to the generation of NADPH and ATP, which are necessary to fuel the nitrogen-fixation process. On the other hand, the fixation of atmospheric nitrogen into assimilable forms, such as ammonium, is essential for supporting the biosynthesis of proteins and pigments, which are necessary to maintain the efficiency of carbon fixation through photosynthesis. Studying how these two processes are interconnected allows us to expand our knowledge of the metabolism of these organisms. The implications are manifold, including utilizing cyanobacteria more efficiently in biotechnology and gaining a better understanding of disturbances in the production of bioavailable carbon and nitrogen in nature in relation to climate change. To study the relationship between the two metabolisms, this thesis project examined the cellular redox state as an indicator of photosynthetic and nitrogen-fixing metabolism, as photosynthesis produces reducing agents (NADPH) which are consumed by nitrogen fixation. To measure the redox environment, fluorescent redox-sensitive probes were expressed in cyanobacteria. These are modified variants of GFP capable of selectively responding to indicators of the intracellular redox environment. These include Grx1roGFP2, which responds to the redox balance of glutathione, a metabolite useful for cells to protect against oxidative damage from ROS, and the Hyper7 probe, specific for determining hydrogen peroxide concentration. Anabaena sp. PCC 7120, a model strain in cyanobacterial studies, was selected as the model organism, where nitrogen fixation and carbon fixation are spatially separated in what are known as heterocysts and vegetative cells, respectively. The strains expressing these probes were studied under various environmental conditions. In particular, the response to atmospheric carbon dioxide concentration and light intensity was studied to influence photosynthetic metabolism and to investigate the resulting changes in intracellular redox state. These analyses were conducted by monitoring the fluorescence of the entire culture and through confocal microscopy to achieve single-cell spatial resolution.
Il ciclo dell'azoto è una componente fondamentale della biosfera, dal momento che questo elemento chimico è un costituente fondamentale delle macromolecole, necessarie alla sopravvivenza degli esseri viventi. La maggior parte dell’azoto si trova sottoforma di gas nell’atmosfera, e questa sua forma è inaccessibile alla gran parte degli organismi viventi. Per questo motivo, la conversione dell’azoto gassoso in forme biodisponibili è un meccanismo fondamentale per la sopravvivenza degli esseri viventi. Tra i principali responsabili della fissazione dell’azoto atmosferico in azoto assimilabile ci sono alcuni cianobatteri, che sono anche in grado di fissare il carbonio atmosferico nel processo chiamato fotosintesi, sono per questo chiamati microorganismi fotosintetici azotofissatori. In essi, il ciclo del carbonio e il ciclo dell’azoto sono strettamente interdipendenti. La fissazione del carbonio produce zuccheri che vengono utilizzati nel metabolismo dell’azoto come scheletri carboniosi per la sua assimilazione. Inoltre contribuisce alla generazione di NADPH e ATP necessari ad alimentare il processo di azotofissazione. D’altra parte, la fissazione dell’azoto atmosferico in forme assimilabili, come l’ammonio, è fondamentale per alimentare la biosintesi di proteine e pigmenti, necessari per preservare l’efficienza della fissazione fotosintetica del carbonio. Studiare come questi due processi siano interconnessi ci permette di ampliare le conoscenze sul funzionamento del metabolismo di questi organismi. Le implicazioni sono molteplici, tra cui: sfruttare i cianobatteri nell’ambito delle biotecnologie più efficientemente e avere una migliore comprensione delle perturbazioni nella produzione di carbonio e azoto biodisponibile in natura in relazione ai cambiamenti climatici. Per studiare la relazione tra i due metabolismi, in questo progetto di tesi ho preso in esame lo stato redox cellulare come indicatore del metabolismo fotosintetico e azotofissatore, questo in quanto la fotosintesi produce agenti riducenti (NADPH) e l’azotofissazione li consuma. Per misurare l’ambiente redox sono state espresse delle sonde raziometriche fluorescenti in cianobatteri. Si tratta di varianti modificate della GFP in grado di rispondere selettivamente agli indicatori dell’ambiente redox intracellulare. Queste sono la Grx1roGFP2, che risponde all’equilibrio redox del glutatione, un metabolita utile alle cellule per la protezione dai danni ossidativi derivanti dai ROS, e la sonda Hyper7, specifica per la determinazione della concentrazione di perossido d’idrogeno. Come organismo modello è stato selezionato Anabaena sp. PCC 7120, un ceppo di riferimento nello studio dei cianobatteri, dove la fissazione dell’azoto e la fissazione del carbonio sono separate spazialmente in quelle che vengono chiamate eterocisti e cellule vegetative, rispettivamente. I ceppi che esprimono queste sonde sono stati studiati in diverse condizioni ambientali. In particolare, è stata studiata la risposta alla concentrazione atmosferica di anidride carbonica e all’intensità di luce, per influenzare il metabolismo fotosintetico e studiare i cambiamenti dello stato redox intracellulari conseguenti. Queste analisi sono state effettuate monitorando la fluorescenza di tutta la coltura e tramite microscopia confocale per raggiungere la risoluzione spaziale della singola cellula.
Gestione dei ROS durante la fissazione dell'azoto: espressione di sonde FRET raziometriche in Anabaena sp. PCC 7120
STORTI, TOMMASO
2023/2024
Abstract
The nitrogen cycle is a fundamental component of the biosphere, as this chemical element is a key constituent of macromolecules necessary for the survival of living organisms. Most nitrogen is found in the atmosphere as a gas, and this form is inaccessible to most living organisms. For this reason, the conversion of gaseous nitrogen into bioavailable forms is a crucial mechanism for the survival of living beings. Among the primary organisms responsible for fixing atmospheric nitrogen into assimilable forms are certain cyanobacteria, which are also capable of fixing atmospheric carbon through a process called photosynthesis. These are therefore known as photosynthetic nitrogen-fixing microorganisms. In these organisms, the carbon cycle and the nitrogen cycle are closely interdependent. Carbon fixation produces sugars that are used in nitrogen metabolism as carbon skeletons for its assimilation. Additionally, it contributes to the generation of NADPH and ATP, which are necessary to fuel the nitrogen-fixation process. On the other hand, the fixation of atmospheric nitrogen into assimilable forms, such as ammonium, is essential for supporting the biosynthesis of proteins and pigments, which are necessary to maintain the efficiency of carbon fixation through photosynthesis. Studying how these two processes are interconnected allows us to expand our knowledge of the metabolism of these organisms. The implications are manifold, including utilizing cyanobacteria more efficiently in biotechnology and gaining a better understanding of disturbances in the production of bioavailable carbon and nitrogen in nature in relation to climate change. To study the relationship between the two metabolisms, this thesis project examined the cellular redox state as an indicator of photosynthetic and nitrogen-fixing metabolism, as photosynthesis produces reducing agents (NADPH) which are consumed by nitrogen fixation. To measure the redox environment, fluorescent redox-sensitive probes were expressed in cyanobacteria. These are modified variants of GFP capable of selectively responding to indicators of the intracellular redox environment. These include Grx1roGFP2, which responds to the redox balance of glutathione, a metabolite useful for cells to protect against oxidative damage from ROS, and the Hyper7 probe, specific for determining hydrogen peroxide concentration. Anabaena sp. PCC 7120, a model strain in cyanobacterial studies, was selected as the model organism, where nitrogen fixation and carbon fixation are spatially separated in what are known as heterocysts and vegetative cells, respectively. The strains expressing these probes were studied under various environmental conditions. In particular, the response to atmospheric carbon dioxide concentration and light intensity was studied to influence photosynthetic metabolism and to investigate the resulting changes in intracellular redox state. These analyses were conducted by monitoring the fluorescence of the entire culture and through confocal microscopy to achieve single-cell spatial resolution.File | Dimensione | Formato | |
---|---|---|---|
Storti_Tommaso.pdf
accesso riservato
Dimensione
10.31 MB
Formato
Adobe PDF
|
10.31 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/70254