Beetles make up about 25% (between 350,000–400,000 species) of all described species (about 1.5 million species), making them the most species-rich order on Earth. To comprehend the mechanisms that have led to the remarkable diversity of the beetles, phylogenetic approach might be necessary. Beetles include wood, bark and root boring species that have the potential to significantly harm the economy and the hosts in the ecosystems that they infiltrate. Chemical pesticides are among the most widely used preventive measures to prevent outbreaks, but prolonged overuse of pesticides has resulted in numerous issues, including biodiversity losses, bio-amplification of harmful compounds in the food chain, pesticide resistance, and environmental contamination Insects may use a variety of visual, olfactory and auditory cues to aid their decision making while feeding or oviposition. It is crucial to investigate the mechanisms behind both olfactory and visual sensory systems in order to regulate adult behaviors, such as interfering with their mating and feeding habits to reduce insect pest population. In this study we focus on insect visual systems, especially opsin evolution in beetles to understand host plant – beetle interactions. Vision of color relies on the capacity to discriminate between different wavelengths. The unit eye in the compound eye, also known as the ommatidium, is the structural unit for vision in insects. Each ommatidium is typically made up of a particular number of photoreceptor neurons; however ommatidium numbers and sizes can vary very widely. To perceive color, various photopigments located within particular photoreceptor cells must be present. These photopigments consist of an opsin protein portion, opsins interact with G-proteins which triggers downstream cellular processes that converts light signal to vision in the brain. Three opsin proteins, UV- Ultraviolet, SW- short wavelength and LW – long wavelength are typically found in insects. In this thesis, we analyze UV and LW opsins and their duplications constructing large scale evolutionary trees by using almost 300 gene sequences across 49 species to examine the opsin diversification in different beetle families and make attempts to understand how ecological needs affect opsin evolution. Our results show that, divergent evolution characterized the UV and LW opsins of Coleoptera, as proved by their very heterogeneous substitution pattern of amino-acids and long pair-wise distances between paralogous pairs. On the contrary, most of orthologous sequences were homogeneous, at least at the protein level, due to structural and functional constraints. The two ML trees obtained from LW and UV opsin proteins analysed separately largely mirror in their topology the phylogeny of the species from what they have been obtained with some expected exceptions.
I coleotteri costituiscono circa il 25% (tra 350.000 e 400.000 specie) di tutte le specie descritte (circa 1,5 milioni di specie), rendendoli l‘ordine più ricco di specie sulla Terra. Per comprendere i meccanismi che hanno portato alla notevole diversità dei coleotteri, è necessaria una dettagliata analisi filogenetica. Alcuni coleotteri attacano legno, corteccia e radici e hanno il potenziale per causare danni significativi all‘economia e agli ospiti negli ecosistemi in cui si infiltrano. I pesticidi chimici sono tra le misure preventive più utilizzate per prevenire le epidemie, ma un uso eccessivo e prolungato di pesticidi ha provocato numerosi problemi, tra cui perdite di biodiversità, bioamplificazione di composti dannosi nella catena alimentare, resistenza ai pesticidi e contaminazione ambientale. Gli insetti possono utilizzare una varietà di segnali visivi, olfattivi e uditivi per aiutare il loro processo decisionale durante l'alimentazione o la deposizione delle uova. È fondamentale studiare i meccanismi alla base dei sistemi sensoriali sia olfattivi che visivi al fine di regolare i comportamenti degli adulti, come interferire con le loro abitudini di accoppiamento e alimentazione per ridurre la popolazione di insetti nocivi. In questo studio ci concentriamo sui sistemi visivi degli insetti, in particolare l'evoluzione delle proteine opsine nei Coleotteri per comprendere le interazioni con le piante ospiti. La visione del colore si basa sulla capacità di discriminare tra diverse lunghezze d'onda. L'unità oculare nell'occhio composto, nota anche come ommatidio, è l'unità strutturale per la visione negli insetti. Ciascun ommatidio è tipicamente costituito da un particolare numero di neuroni fotorecettori, tuttavia il numero e le dimensioni dell'ommatidio possono variare ampiamente. Per percepire il colore devono essere presenti vari fotopigmenti situati all'interno di particolari cellule fotorecettrici. Questi fotopigmenti sono costituiti da una porzione di proteina opsina, le opsine interagiscono con le proteine G che attivano i processi cellulari a valle che convertono i segnali luminosi in visione nel cervello. Tre proteine opsina UV-Ultravioletto, SW-lunghezza d'onda corta e LW-lunghezza d'onda lunga si trovano tipicamente negli insetti. In questa tesi, analizziamo le opsine UV e LW e le loro duplicazioni costruendo alberi evolutivi su larga scala utilizzando quasi 300 sequenze genetiche in 49 specie per esaminare la diversificazione delle opsine in diverse famiglie di coleotteri e tentare di comprendere come i bisogni ecologici influenzano l'evoluzione delle opsine. Un'evoluzione divergente ha caratterizzato le opsine UV e LW dei coleotteri, come dimostrato dal loro processo di sostituzione amino-acidico molto eterogeneo e dalle lunghe distanze tra le coppie di sequenze paraloghe. Al contrario, la maggior parte delle sequenze ortologhe sono risultate omogenee, almeno a livello proteico, a causa di vincoli strutturali e funzionali. I due alberi ML ottenuti dalle proteine opsine LW e UV analizzati separatamente rispecchiano in gran parte, nella loro topologia, la filogenesi delle specie da cui sono stati ottenuti con alcune eccezioni.
The evolution and potential ecological applications of opsin proteins in coleoptera, the largest insect order
LOKUMCU, SEZGI SELIN
2023/2024
Abstract
Beetles make up about 25% (between 350,000–400,000 species) of all described species (about 1.5 million species), making them the most species-rich order on Earth. To comprehend the mechanisms that have led to the remarkable diversity of the beetles, phylogenetic approach might be necessary. Beetles include wood, bark and root boring species that have the potential to significantly harm the economy and the hosts in the ecosystems that they infiltrate. Chemical pesticides are among the most widely used preventive measures to prevent outbreaks, but prolonged overuse of pesticides has resulted in numerous issues, including biodiversity losses, bio-amplification of harmful compounds in the food chain, pesticide resistance, and environmental contamination Insects may use a variety of visual, olfactory and auditory cues to aid their decision making while feeding or oviposition. It is crucial to investigate the mechanisms behind both olfactory and visual sensory systems in order to regulate adult behaviors, such as interfering with their mating and feeding habits to reduce insect pest population. In this study we focus on insect visual systems, especially opsin evolution in beetles to understand host plant – beetle interactions. Vision of color relies on the capacity to discriminate between different wavelengths. The unit eye in the compound eye, also known as the ommatidium, is the structural unit for vision in insects. Each ommatidium is typically made up of a particular number of photoreceptor neurons; however ommatidium numbers and sizes can vary very widely. To perceive color, various photopigments located within particular photoreceptor cells must be present. These photopigments consist of an opsin protein portion, opsins interact with G-proteins which triggers downstream cellular processes that converts light signal to vision in the brain. Three opsin proteins, UV- Ultraviolet, SW- short wavelength and LW – long wavelength are typically found in insects. In this thesis, we analyze UV and LW opsins and their duplications constructing large scale evolutionary trees by using almost 300 gene sequences across 49 species to examine the opsin diversification in different beetle families and make attempts to understand how ecological needs affect opsin evolution. Our results show that, divergent evolution characterized the UV and LW opsins of Coleoptera, as proved by their very heterogeneous substitution pattern of amino-acids and long pair-wise distances between paralogous pairs. On the contrary, most of orthologous sequences were homogeneous, at least at the protein level, due to structural and functional constraints. The two ML trees obtained from LW and UV opsin proteins analysed separately largely mirror in their topology the phylogeny of the species from what they have been obtained with some expected exceptions.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Sezgi Selin Lokumcu_Coleoptera opsin.pdf
accesso riservato
Dimensione
3.08 MB
Formato
Adobe PDF
|
3.08 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/70770