Human papillomavirus (HPV) represents the most common sexually transmitted infection worldwide, with a significant correlation to the development of precancerous lesions and anal and cervical cancer. This study explores the integration of advanced diagnostic and therapeutic techniques for the diagnosis and treatment of HPV, with particular attention to the implementation of screening algorithms for high-risk populations and the development of an artificial intelligence (AI) algorithm for the recognition of precancerous lesions. In the first part of the research, current clinical procedures for the diagnosis and treatment of HPV are analyzed, highlighting the strengths and limitations of existing methods. Subsequently, a screening algorithm specifically designed to identify and monitor high-risk populations is proposed, improving the effectiveness of prevention and early diagnosis. The second part of the study focuses on the development of an artificial intelligence model capable of providing clinicians with indications regarding tissue areas affected by precancerous lesions caused by HPV.
Il papillomavirus umano (HPV) rappresenta l’infezione sessualmente trasmessa più comune al mondo, con una significativa correlazione con lo sviluppo di lesioni precancerose e cancro anale e cervicale. Questo studio esplora l'integrazione di tecniche diagnostiche e terapeutiche avanzate per la diagnosi e il trattamento dell'HPV, con un'attenzione particolare all'implementazione di algoritmi di screening per le popolazioni ad alto rischio e lo sviluppo di un algoritmo di intelligenza artificiale (AI) per il riconoscimento delle lesioni precancerose. Nella prima parte della ricerca, vengono analizzate le procedure cliniche correnti per la diagnosi e il trattamento dell'HPV, evidenziando i punti di forza e le limitazioni dei metodi esistenti. Successivamente, viene proposto un algoritmo di screening specificamente progettato per identificare e monitorare le popolazioni ad alto rischio, migliorando l'efficacia della prevenzione e della diagnosi precoce. La seconda parte dello studio si concentra sullo sviluppo di un modello di intelligenza artificiale in grado di dare un’indicazione al clinico su parti di tessuti affetti da lesioni precancerose causate.
Diagnosi e Trattamento dell'HPV: Il Ruolo degli Algoritmi di Intelligenza Artificiale nello Screening e Riconoscimento delle Lesioni Precancerose
CASINI, SOFIA
2023/2024
Abstract
Human papillomavirus (HPV) represents the most common sexually transmitted infection worldwide, with a significant correlation to the development of precancerous lesions and anal and cervical cancer. This study explores the integration of advanced diagnostic and therapeutic techniques for the diagnosis and treatment of HPV, with particular attention to the implementation of screening algorithms for high-risk populations and the development of an artificial intelligence (AI) algorithm for the recognition of precancerous lesions. In the first part of the research, current clinical procedures for the diagnosis and treatment of HPV are analyzed, highlighting the strengths and limitations of existing methods. Subsequently, a screening algorithm specifically designed to identify and monitor high-risk populations is proposed, improving the effectiveness of prevention and early diagnosis. The second part of the study focuses on the development of an artificial intelligence model capable of providing clinicians with indications regarding tissue areas affected by precancerous lesions caused by HPV.File | Dimensione | Formato | |
---|---|---|---|
Casini_Sofia.pdf
accesso riservato
Dimensione
6.37 MB
Formato
Adobe PDF
|
6.37 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/72862