The Ti6Al4V biomedical alloy is highly favored due to its excellent mechanical properties, biocompatibility, and chemical resistance. Additive manufacturing allows for the customization of medical implants based onpatient-specific measurements. One of the most effective techniques for producing Ti6Al4V is laser powder bed fusion (L-PBF), which utilizes a laser to selectively melt metal particles layer by layer, resulting in microstructure that differs from conventionally manufactured materials. Biomedical implants made from Ti6Al4V are susceptible to corrosion when exposed to biological fluids, especially at the interface between the material and biological tissue, where surface roughness plays a critical role in cell attachment and integration. This corrosion risk is further increased in high-stress environments, such as orthopedic implants, or when exposed to aggressive ions, like fluoride from toothpaste. This study focuses on evaluating the corrosion behavior of Ti6Al4V after stress relieving heat treatment. The study used various electrochemical polarization methods (PD, MS, EIS) in a non corrosive environment (Borate Buffer solution) to understand the behaviour of the passive layer. Additionally, stress corrosion cracking (SCC) under different strain conditions was explored through the microcapillary technique in fluoride-enriched saliva solution. The analyses demonstrated that the residual stresses have been effectily reduced in LPBF, but at the temperature of 700° and 800° a completely changing in the microstructure occured. In both corrosive and non-corrosive environments, the results indicated that increased temperatures lead to a decline in corrosion performance for both LPBF and conventionally manufactured samples. Specifically, temperatures of 400°C and 500°C resulted in only a marginal reduction in corrosion resistance, with both manufacturing methods exhibiting similar behavior with the a received under these conditions. Conversely, at temperatures of 700°C and 800°C, a significant deterioration in corrosion resistance was observed. When comparing LPBF and conventional samples, LPBF demonstrated superior performance in terms of both the efficiency and thickness of the passive layer. Additionally, in corrosive environments, LPBF samples required less time to achieve passivation compared to their conventionally manufactured counterparts.
La lega Ti6Al4V è ampiamente utilizzata per le sue eccellenti proprietà meccaniche, biocompatibilità e resistenza chimica. Le tecniche di additive manufacturing consente la personalizzazione degli impianti medici basati su misurazioni specifiche del paziente. Una delle tecniche più efficaci per la produzione di Ti6Al4V è la fusione a letto di polvere laser (L-PBF), che utilizza un laser per fondere selettivamente le particelle metalliche strato dopo strato, risultando in una microstruttura che differisce dai materiali prodotti convenzionalmente. Gli impianti biomedici realizzati in Ti6Al4V sono suscettibili alla corrosione quando esposti a fluidi biologici, specialmente all’interfaccia tra il materiale e il tessuto biologico, dove la rugosità superficiale gioca un ruolo critico nell’adesione e nell’integrazione cellulare. Questo rischio di corrosione aumenta ulteriormente in ambienti ad alta tensione, come gli impianti ortopedici, o quando esposti a ioni aggressivi, come il fluoro presente nel dentifricio. Questo studio si concentra sulla valutazione del comportamento alla corrosione del Ti6Al4V dopo il trattamento termico di rilascio degli stress. Sono stati utilizzati vari metodi di polarizzazione elettrochimica (PD, MS, EIS) in un ambiente non corrosivo (soluzione Borate Buffer) per comprendere il comportamento dello strato passivo. È stata esplorata inoltre la fessurazione da tensocorrosione (SCC) in diverse condizioni di deformazione plastica attraverso la tecnica microcapillare in una soluzione di saliva arricchita con fluoruro di sodio. Le analisi hanno dimostrato che gli stress residui sono stati efficacemente ridotti nell’LPBF, ma alle temperature di 700° e 800° si è verificato un cambiamento completo nella microstruttura. In entrambi gli ambienti corrosivi e non corrosivi, i risultati hanno indicato che l’aumento delle temperature porta a un deterioramento delle prestazioni di corrosione sia per i campioni LPBF che per quelli prodotti convenzionalmente. In particolare, le temperature di 400°C e 500°C hanno comportato solo una riduzione marginale della resistenza alla corrosione, con entrambi i metodi di produzione che hanno mostrato un comportamento simile a quello non trattato in queste condizioni. Al contrario, a temperature di 700°C e 800°C, è stata osservata una significativa deteriorazione della resistenza alla corrosione. Confrontando i campioni LPBF e quelli prodotti tradizionalmente, l’LPBF ha dimostrato prestazioni superiori sia in termini di efficienza che di spessore dello strato passivo. Inoltre, in ambiente corrosivo, i campioni LPBF hanno richiesto meno tempo per raggiungere la passivazione rispetto ai loro omologhi prodotti convenzionalmente.
Effetti dei trattamenti termici sul comportamento a corrosione della lega Ti6Al4V prodotta mediante additive manufacturing per applicazioni biomedicali
D'AMBROSI, LORENZO
2023/2024
Abstract
The Ti6Al4V biomedical alloy is highly favored due to its excellent mechanical properties, biocompatibility, and chemical resistance. Additive manufacturing allows for the customization of medical implants based onpatient-specific measurements. One of the most effective techniques for producing Ti6Al4V is laser powder bed fusion (L-PBF), which utilizes a laser to selectively melt metal particles layer by layer, resulting in microstructure that differs from conventionally manufactured materials. Biomedical implants made from Ti6Al4V are susceptible to corrosion when exposed to biological fluids, especially at the interface between the material and biological tissue, where surface roughness plays a critical role in cell attachment and integration. This corrosion risk is further increased in high-stress environments, such as orthopedic implants, or when exposed to aggressive ions, like fluoride from toothpaste. This study focuses on evaluating the corrosion behavior of Ti6Al4V after stress relieving heat treatment. The study used various electrochemical polarization methods (PD, MS, EIS) in a non corrosive environment (Borate Buffer solution) to understand the behaviour of the passive layer. Additionally, stress corrosion cracking (SCC) under different strain conditions was explored through the microcapillary technique in fluoride-enriched saliva solution. The analyses demonstrated that the residual stresses have been effectily reduced in LPBF, but at the temperature of 700° and 800° a completely changing in the microstructure occured. In both corrosive and non-corrosive environments, the results indicated that increased temperatures lead to a decline in corrosion performance for both LPBF and conventionally manufactured samples. Specifically, temperatures of 400°C and 500°C resulted in only a marginal reduction in corrosion resistance, with both manufacturing methods exhibiting similar behavior with the a received under these conditions. Conversely, at temperatures of 700°C and 800°C, a significant deterioration in corrosion resistance was observed. When comparing LPBF and conventional samples, LPBF demonstrated superior performance in terms of both the efficiency and thickness of the passive layer. Additionally, in corrosive environments, LPBF samples required less time to achieve passivation compared to their conventionally manufactured counterparts.| File | Dimensione | Formato | |
|---|---|---|---|
|
Dambrosi_Lorenzo.pdf
Open Access dal 16/10/2025
Dimensione
35.84 MB
Formato
Adobe PDF
|
35.84 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/73645