Studying the mechanical properties of hydrogels is crucial due to their role as a viable alternative for mimicking biological environments. Traditionally, cells have been cultured on planar surfaces of polystyrene or glass Petri dishes for a long time. However, the research is shifting towards a three-dimensional environment (3D cell culture), aiming to replicate in vivo conditions more faithfully. This involves not only mimicking the composition and the biochemistry of the natural tissues but also reproducing the mechanical responses inherent in biological tissues that surround living cells. In this thesis activity, hydrogels based on methacrylated silk fibroin (SilMA) and methacrylated hyaluronic acid (HAMA) with several different properties will be prepared by varying parameters such as the relative polymer concentration (ratio SilMA:HAMA), the type of photoinitiator, Lithium phenyl-trimethylbenzoylphosphinate (LAP) or Ruthenium/Sodium persulfate (Ru/SPS) and the UV light-exposure time (30-60-120 seconds). The mechanical and physical-chemical tests performed on the hydrogels are the stability swelling test in Phosphate buffered saline (PBS) or dH2O, the unconfined compression test with two different compression speed values, the rheometer viscoelasticity tests and the Fourier-transform infrared spectroscopy (FTIR) test. The aim of the thesis will be the development of a standardized protocol to measure the mechanical properties of the SilMA/HAMA hydrogels, as well as the identification of the compositions/process parameters which match the mechanical properties of specific human tissues, such as the healthy and pathological cardiac tissue. The future driving perspective is the development of a platform to match the properties of the human tissues using SilMA and HAMA for its use in the development of 3D in vitro models for biological studies and drug screening. All the conditions tested have been already optimized to be printable with an extrusion-based bioprinter. Thus, making these materials usable as bioinks for the development of 3D bioprinted in vitro models with specific architectures which can be tuned and personalized based on the needs.
Lo studio delle proprietà meccaniche degli hydrogel è fondamentale per il loro ruolo di valida alternativa per imitare gli ambienti biologici. Tradizionalmente, le cellule sono state coltivate per lungo tempo su superfici planari di polistirene o piastre di Petri in vetro. Tuttavia, la ricerca si sta spostando verso un ambiente tridimensionale (coltura cellulare 3D), con l'obiettivo di replicare più fedelmente le condizioni in vivo. Ciò implica non solo imitare la composizione e la biochimica dei tessuti naturali, ma anche riprodurre le risposte meccaniche proprie dei tessuti biologici che circondano le cellule viventi. In questa attività di tesi, verranno preparati hydrogel a base di fibroina di seta metacrilata (SilMA) e acido ialuronico metacrilato (HAMA) con diverse proprietà, variando parametri quali la concentrazione relativa del polimero (rapporto SilMA:HAMA), il tipo di fotoiniziatore, litio fenil-trimetilbenzoilfosfinato (LAP) oppure rutenio/sodio persolfato (Ru/SPS) e il tempo di esposizione alla luce UV (30-60-120 secondi). I test meccanici e fisico-chimici eseguiti sugli hydrogel sono il test di stabilità al rigonfiamento (swelling) in soluzione salina tamponata con fosfato (PBS) o dH2O, il test di compressione non confinata con due diversi valori di velocità di compressione, i test di viscoelasticità al reometro ed il test di spettroscopia infrarossa a trasformata di Fourier (FT-IR). L'obiettivo del progetto di tesi è lo sviluppo di un protocollo standardizzato atto a misurare le proprietà biomeccaniche degli hydrogel SilMA/HAMA, nonché l'identificazione dei parametri di composizione/processo che corrispondono alle proprietà meccaniche di specifici tessuti umani, come il tessuto cardiaco sano e patologico. La prospettiva futura è lo sviluppo di una piattaforma in grado di riprodurre le proprietà dei tessuti umani utilizzando hydrogel a base di SilMA e HAMA per lo sviluppo di modelli 3D in vitro per studi biologici e screening di farmaci. Tutte le condizioni testate sono già state precedentemente ottimizzate per essere stampabili con una biostampate 3D ad estrusione. Sulla base di ciò, questi materiali sono utilizzabili come bioinchiostri per lo sviluppo di modelli in vitro biostampati in 3D con architetture specifiche che possono essere messe a punto e personalizzate in base alle esigenze.
Methacrylated silk fibroin/hyaluronic acid hydrogels mimicking the mechanical properties of cardiac tissues
PROSSER, MASSIMILIANO
2023/2024
Abstract
Studying the mechanical properties of hydrogels is crucial due to their role as a viable alternative for mimicking biological environments. Traditionally, cells have been cultured on planar surfaces of polystyrene or glass Petri dishes for a long time. However, the research is shifting towards a three-dimensional environment (3D cell culture), aiming to replicate in vivo conditions more faithfully. This involves not only mimicking the composition and the biochemistry of the natural tissues but also reproducing the mechanical responses inherent in biological tissues that surround living cells. In this thesis activity, hydrogels based on methacrylated silk fibroin (SilMA) and methacrylated hyaluronic acid (HAMA) with several different properties will be prepared by varying parameters such as the relative polymer concentration (ratio SilMA:HAMA), the type of photoinitiator, Lithium phenyl-trimethylbenzoylphosphinate (LAP) or Ruthenium/Sodium persulfate (Ru/SPS) and the UV light-exposure time (30-60-120 seconds). The mechanical and physical-chemical tests performed on the hydrogels are the stability swelling test in Phosphate buffered saline (PBS) or dH2O, the unconfined compression test with two different compression speed values, the rheometer viscoelasticity tests and the Fourier-transform infrared spectroscopy (FTIR) test. The aim of the thesis will be the development of a standardized protocol to measure the mechanical properties of the SilMA/HAMA hydrogels, as well as the identification of the compositions/process parameters which match the mechanical properties of specific human tissues, such as the healthy and pathological cardiac tissue. The future driving perspective is the development of a platform to match the properties of the human tissues using SilMA and HAMA for its use in the development of 3D in vitro models for biological studies and drug screening. All the conditions tested have been already optimized to be printable with an extrusion-based bioprinter. Thus, making these materials usable as bioinks for the development of 3D bioprinted in vitro models with specific architectures which can be tuned and personalized based on the needs.File | Dimensione | Formato | |
---|---|---|---|
Prosser_Massimiliano.pdf
embargo fino al 15/10/2027
Dimensione
6.88 MB
Formato
Adobe PDF
|
6.88 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/73650