In recent decades, interest in biomaterials and bioceramics has grown significantly due to their numerous biomedical applications, particularly in bone regeneration and the development of orthopedic and dental implants. Among the various types of bioceramics, those based on silicates and calcium salts have stood out for their mechanical properties, biocompatibility, and bioactivity, which promote integration with bone tissue. Preceramic polymers are of great interest in tissue engineering because they enable the creation of transformable materials, such as the conversion of silicones into silica and carbon. In the past, several experiments have been conducted to also obtain stone-like materials from these polymers. Carbon is consistently present among the products, and while it can have positive effects, the scientific community is divided on the use of compounds containing carbon. Therefore, the focus has shifted to how it can be removed. This thesis investigates the impact of zinc oxide (ZnO) on the ceramic transformation of silicone- and calcium salt-based emulsions into bioceramics. Bioceramics are essential materials in biomedical applications for bone tissue engineering due to their bioactivity and biocompatibility with human tissues. Starting from 70S30C bioglass, produced using emulsified preceramic polymers (used as precursors), the thesis explores the possibility of obtaining this product without residual carbon after thermal treatments, thanks to the addition of zinc oxide as a precursor in place of silica (FS). After thermal treatment, the zinc is expected to be reduced, with the goal of producing a more porous material through the reaction between carbon and zinc. The 3D printing technology used for scaffold production is masked stereolithography (MSLA). This study is part of the broader context of scaffold production for bone tissue engineering and investigates the gradual incorporation of various percentages of zinc oxide in the production of bioglass, optimizing the manufacturing process and selecting the appropriate thermal treatment to achieve the thesis goals. Several macro and microstructural characterization analyses were performed on the obtained samples, including X-ray diffraction (XRD) analysis, porosity analysis, optical and SEM microscopy, and uniaxial compression tests. The description of the structural and morphological properties of the bioceramics obtained in this thesis allowed for comparisons with similar products found in the literature. This research provides valuable insights for the development of advanced bioceramicbased scaffolds for medical applications, potentially improving the performance and longevity of biomedical implants.
Negli ultimi decenni, l'interesse verso i biomateriali e le bioceramiche è cresciuto notevolmente grazie alle loro numerose applicazioni in campo biomedico, in particolare per la rigenerazione ossea e la realizzazione di impianti ortopedici e odontoiatrici. Tra le diverse tipologie di bioceramici, quelli a base di silicati e sali di calcio si sono distinti per le loro proprietà meccaniche, biocompatibilità e bioattività, che favoriscono l'integrazione con i tessuti ossei. I polimeri preceramici sono interessanti in ingegneria tissutale perché permettono di ottenere materiali trasformabili, come la conversione da siliconi a silice e carbonio. Sono stati condotti, in passato, diversi esperimenti per ottenere anche materiali di tipo pietroso da questi polimeri. Il carbonio risulta sempre presente tra i prodotti e, sebbene possa avere effetti positivi, non tutta la comunità scientifica concorda sull9utilizzo di composti contenenti carbonio; pertanto, si è pensato a come rimuoverlo. Questa tesi indaga l'impatto dell'ossido di zinco (ZnO) sulla trasformazione ceramica di emulsioni a base di siliconi e sali di calcio in bioceramici. I bioceramici sono materiali essenziali nelle applicazioni biomediche di ingegneria tissutale ossea, grazie alla loro bioattività e biocompatibilità con i tessuti umani. A partire dal biovetro 70S30C, prodotto mediante emulsione di polimeri preceramici (utilizzati come precursori), la tesi studia la possibilità di ottenere questo prodotto senza carbonio residuo dopo i trattamenti termici, grazie all9aggiunta dell9ossido di zinco come precursore al posto della silice (FS). Lo zinco dovrebbe, successivamente al trattamento termico, essere ridotto, con l9obiettivo di ottenere un materiale ancora più poroso grazie alla reazione tra carbonio e zinco. La tecnologia di stampa 3D utilizzata per la produzione degli scaffold è la stereolitografia mascherata (MSLA). Lo studio si inserisce nel contesto della produzione di scaffold di forma giroidea per l9ingegneria tissutale ossea ed esplora l9inserimento progressivo in diverse percentuali dell9ossido di zinco nella produzione del biovetro, ottimizzando il processo produttivo e scegliendo il trattamento termico adeguato all9ottenimento dello scopo della tesi. Sono state eseguite diverse analisi di caratterizzazione macro e microstrutturale dei campioni ottenuti, tra cui analisi di diffrazione ai raggi X (XRD), analisi di porosità, analisi di microscopia ottica e SEM, prove meccaniche di compressione uniassiale. La descrizione delle proprietà strutturali e morfologiche dei bioceramici ottenuti in questo lavoro di tesi ha permesso di confrontare questi ultimi con altri prodotti simili presenti in letteratura. Questa ricerca fornisce preziose intuizioni per lo sviluppo di scaffold a base di bioceramici avanzati per applicazioni mediche, potenzialmente migliorando le prestazioni e la longevità degli impianti biomedicali.
Effetto dell'Ossido di Zinco sulla Trasformazione Ceramica di Emulsioni a base di Siliconi e Sali di Calcio in Bioceramici
GARAU, ROBERTO
2023/2024
Abstract
In recent decades, interest in biomaterials and bioceramics has grown significantly due to their numerous biomedical applications, particularly in bone regeneration and the development of orthopedic and dental implants. Among the various types of bioceramics, those based on silicates and calcium salts have stood out for their mechanical properties, biocompatibility, and bioactivity, which promote integration with bone tissue. Preceramic polymers are of great interest in tissue engineering because they enable the creation of transformable materials, such as the conversion of silicones into silica and carbon. In the past, several experiments have been conducted to also obtain stone-like materials from these polymers. Carbon is consistently present among the products, and while it can have positive effects, the scientific community is divided on the use of compounds containing carbon. Therefore, the focus has shifted to how it can be removed. This thesis investigates the impact of zinc oxide (ZnO) on the ceramic transformation of silicone- and calcium salt-based emulsions into bioceramics. Bioceramics are essential materials in biomedical applications for bone tissue engineering due to their bioactivity and biocompatibility with human tissues. Starting from 70S30C bioglass, produced using emulsified preceramic polymers (used as precursors), the thesis explores the possibility of obtaining this product without residual carbon after thermal treatments, thanks to the addition of zinc oxide as a precursor in place of silica (FS). After thermal treatment, the zinc is expected to be reduced, with the goal of producing a more porous material through the reaction between carbon and zinc. The 3D printing technology used for scaffold production is masked stereolithography (MSLA). This study is part of the broader context of scaffold production for bone tissue engineering and investigates the gradual incorporation of various percentages of zinc oxide in the production of bioglass, optimizing the manufacturing process and selecting the appropriate thermal treatment to achieve the thesis goals. Several macro and microstructural characterization analyses were performed on the obtained samples, including X-ray diffraction (XRD) analysis, porosity analysis, optical and SEM microscopy, and uniaxial compression tests. The description of the structural and morphological properties of the bioceramics obtained in this thesis allowed for comparisons with similar products found in the literature. This research provides valuable insights for the development of advanced bioceramicbased scaffolds for medical applications, potentially improving the performance and longevity of biomedical implants.File | Dimensione | Formato | |
---|---|---|---|
Garau_Roberto.pdf
accesso riservato
Dimensione
4.16 MB
Formato
Adobe PDF
|
4.16 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/73726