Cardiovascular disease is the leading cause of mortality globally, with arrhyth- mias being one of the most common cardiac disorders associated with these conditions. Among arrhythmias, atrial fibrillation (AF) is the most prevalent in adults and closely related to an increased risk of stroke, heart failure, and other life- threatening complications. Atrial fibrillation contributes significantly to deaths related to cardiovascular disease, which poses a major challenge to global public health. In the field of AF research, computational simulations of the heart play a crucial role in understanding the electrophysiological mechanisms underlying pathological conditions. Simulations provide a valuable tool to assist doctors in choosing the most appropriate therapies. The objective of this study is to ana- lyze the tension generated at the cellular level during cardiac contraction, both in healthy atrial tissue and in that affected by atrial fibrillation, in its paroxysmal and persistent forms. Through a computational model that couples electrical and mechanical activity, the aim was to assess the relationship between intracellular calcium concentration and muscle contraction force, taking into account the role of stretch-activated ion channels. In addition, it was studied how abnormalities induced by atrial fibrillation affect cardiomyocyte contraction. To achieve this goal, Land’s electromechanical model was implemented in Matlab and coupled with Courtemanche’s electrophysiological model. This allowed a comparison of the results for the action potential, calcium concentration, and tension generated under normal conditions and in the presence of AF at a cellular level. In addition, 3D simulations were developed using the svFSI finite element solver to evaluate the electromechanical response at a tissue level. This approach allowed validation and comparison of the implemented models, providing a deeper understanding of the variations in the force of atrial contraction under different pathological conditions of the heart.
Le malattie cardiovascolari rappresentano la principale causa di morte a livello globale e le aritmie costituiscono uno dei disturbi cardiaci più comuni associati a queste condizioni. Tra le aritmie, la fibrillazione atriale (FA) è la più frequente negli adulti ed è strettamente legata ad un aumento del rischio di ictus, insuffi- cienza cardiaca e altre complicazioni potenzialmente letali. La fibrillazione atriale contribuisce in modo significativo ai decessi legati a patologie cardiovascolari, rappresentando un’importante sfida per la salute pubblica globale. Nel campo della ricerca sulla FA, le simulazioni computazionali del cuore rivestono un ruolo chiave nella comprensione dei meccanismi elettrofisiologici alla base delle con- dizioni patologiche. Le simulazioni rappresentano un prezioso strumento per assistere i medici nella scelta delle terapie più appropriate. L’obiettivo di questo studio è analizzare la tensione generata a livello cellulare durante la contrazione cardiaca, sia nel tessuto atriale sano che in quello affetto da fibrillazione atri- ale, nelle forme parossistica e persistente. Tramite un modello computazionale che accoppia l’attività elettrica e meccanica, si è cercato di valutare la relazione tra la concentrazione di calcio intracellulare e la forza di contrazione muscolare, tenendo conto del ruolo dei canali ionici attivati dallo stiramento. Inoltre, si è studiato come le anomalie indotte dalla fibrillazione atriale influenzino la con- trazione dei cardiomiociti. Per raggiungere questo obiettivo, è stato implementato il modello elettromeccanico di Land in Matlab e accoppiato con il modello elet- trofisiologico di Courtemanche. Questo ha permesso di confrontare i risultati relativi al potenziale d’azione, alla concentrazione di calcio e alla tensione gener- ata sia in condizioni sane che in presenza di FA a livello cellulare. Inoltre, sono state sviluppate simulazioni 3D utilizzando il solutore a elementi finiti svFSI per valutare la risposta elettromeccanica a livello tissutale. Grazie a questo approc- cio è stato possibile confrontare e validare i modelli implementati, fornendo una comprensione più approfondita delle variazioni della forza di contrazione atriale in diverse condizioni patologiche del cuore.
Modellazione computazionale di cardiomiociti atriali con accoppiamento elettromeccanico e valutazione delle modifiche indotte dalla fibrillazione atriale
DI MARCO, ALESSIA
2023/2024
Abstract
Cardiovascular disease is the leading cause of mortality globally, with arrhyth- mias being one of the most common cardiac disorders associated with these conditions. Among arrhythmias, atrial fibrillation (AF) is the most prevalent in adults and closely related to an increased risk of stroke, heart failure, and other life- threatening complications. Atrial fibrillation contributes significantly to deaths related to cardiovascular disease, which poses a major challenge to global public health. In the field of AF research, computational simulations of the heart play a crucial role in understanding the electrophysiological mechanisms underlying pathological conditions. Simulations provide a valuable tool to assist doctors in choosing the most appropriate therapies. The objective of this study is to ana- lyze the tension generated at the cellular level during cardiac contraction, both in healthy atrial tissue and in that affected by atrial fibrillation, in its paroxysmal and persistent forms. Through a computational model that couples electrical and mechanical activity, the aim was to assess the relationship between intracellular calcium concentration and muscle contraction force, taking into account the role of stretch-activated ion channels. In addition, it was studied how abnormalities induced by atrial fibrillation affect cardiomyocyte contraction. To achieve this goal, Land’s electromechanical model was implemented in Matlab and coupled with Courtemanche’s electrophysiological model. This allowed a comparison of the results for the action potential, calcium concentration, and tension generated under normal conditions and in the presence of AF at a cellular level. In addition, 3D simulations were developed using the svFSI finite element solver to evaluate the electromechanical response at a tissue level. This approach allowed validation and comparison of the implemented models, providing a deeper understanding of the variations in the force of atrial contraction under different pathological conditions of the heart.File | Dimensione | Formato | |
---|---|---|---|
Di_Marco_Alessia.pdf
embargo fino al 16/10/2025
Dimensione
5.25 MB
Formato
Adobe PDF
|
5.25 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/73772