Hydrogen is predicted to become ever more important as an energy source and vector in the coming years, in the context of the development of a circular economy. Due to its explosivity, there is a growing need for fast and efficient hydrogen sensors, as evidenced by the growing number of publications in scientific literature about this topic. This thesis focuses on the production of an optical hydrogen sensor composed of WO3 and ZnO. In particular, films composed of pure ZnO, pure WO3, and composites containing Zn and WO3 were synthesized using the sol-gel approach. The sols obtained were deposited on fused silica glass substrates via spin-coating, annealed at 550°C, and coated with platinum nanoparticles. The films thus obtained were characterized via Grazing Incidence X-Ray Diffraction, Ellipsometry, Raman Spectroscopy, Scanning Electron Microscopy, and static and dynamic gas sensing tests. The effects of ageing, the recovery gas, the synthetic approach, and zinc concentration were investigated. Results demonstrated that ageing of the precursor sols leads to a worsening of gas sensing performance ascribable to an excessive thickness of the films and a change in morphology. Two different syntheses were compared, one involving the mixing of the precursor sols (M-synthesis) and the other the dissolution of the Zn precursor into the WO3 sol (S-synthesis). It was discovered that both syntheses lead to a WO3/ZnWO4 heterostructure, with different effects on film morphology. Both syntheses produced sensitive and fast gas sensors, with performance improving with decreasing zinc concentration. The S-synthesis was selected since it constitutes a simpler approach and produced films with better response and recovery speeds. The optimal zinc concentration was found to be at a Zn/(W+Zn) molar ratio of 0.067 as it produced the most sensitive films, due to a combination of morphological and compositional factors, such as grain refinement, porosity and formation of heterostructures. The prepared films showed good response (ΔAbs(λ=870nm) = 0.2 at 100°C), fast response and recovery (15-50s) and stability over 10 cycles at 150°C.
Si predice che l'idrogeno diventerà sempre più importante negli anni a venire come fonte e vettore di energia, nel contesto dello sviluppo di una economia circolare. Per via della sua esplosività, c'è una necessità crescente di sensori di idrogeno veloci e efficienti, come dimostrato dal crescente numero di pubblicazioni in letteratura a riguardo. Questa tesi si concentra sulla produzione di un sensore ottico di idrogeno composto di WO3 e ZnO. In particolare, film composti di puro ZnO, puro WO3, e compositi contenenti Zn e WO3 sono stati sintetizzati con il metodo sol-gel. I sol ottenuti sono stati depositati su substrati di vetro di silice via spin-coating, trattati termicamente a 550°C, a ricoperti di nanoparticelle di platino. I film ottenuti sono stati caratterizzati tramite Grazing Incidence X-Ray Diffraction, Ellissometria, Spettroscopia Raman , Scanning Electron Microscopy, e test di gas sensing statico e dinamico. Gli effetti dell' ageing, del gas di recupero, del metodo sintetico, e della concentrazione di zinco sono stati investigati. I risultati hanno dimostrato che l'ageing dei sol precursori porta a un peggioramento della performance nel gas sensing attribuibile a un eccessivo spessore dei film e a un cambiamento di morfologia. Due sintesi diverse sono state confrontate, una tramite il mescolamento dei sol precursori (sintesi-M) e l'altra lo scioglimento del precursore di Zn nel sol di WO3 (sintesi-S). Si è scoperto che entrambe le sintesi portano a una eterostruttura WO3/ZnWO4, con effetti diversi sulla morfologia del film. Entrambe le sintesi hanno prodotto sensori di gas veloci e sensibili, con performance che migliora al diminuire della concentrazione di Zn. La sintesi-S è stata scelta perché costituisce un approccio più semplice e ha prodotto film con migliori velocità di risposta e recupero. La concentrazione di Zn ottimale è stata trovata a un rapporto molare Zn/(W+Zn) di 0.067 producendo i film più sensibili, per via di una combinazione di fattori morfologici e composizionali, come affinaggio di grana cristallina, porosità a formazione di eterostrutture. i film preparati mostravano buona risposta (ΔAbs(λ=870nm) = 0.2 a 100°C), risposta e recupero veloci (15-50s) e stabilità nel corso di 10 cicli a 150°C.
Film sottili di ZnO/WO3 attivati con nanoparticelle di platino per sensori ottici di idrogeno
BERGHINO, SEBASTIANO
2023/2024
Abstract
Hydrogen is predicted to become ever more important as an energy source and vector in the coming years, in the context of the development of a circular economy. Due to its explosivity, there is a growing need for fast and efficient hydrogen sensors, as evidenced by the growing number of publications in scientific literature about this topic. This thesis focuses on the production of an optical hydrogen sensor composed of WO3 and ZnO. In particular, films composed of pure ZnO, pure WO3, and composites containing Zn and WO3 were synthesized using the sol-gel approach. The sols obtained were deposited on fused silica glass substrates via spin-coating, annealed at 550°C, and coated with platinum nanoparticles. The films thus obtained were characterized via Grazing Incidence X-Ray Diffraction, Ellipsometry, Raman Spectroscopy, Scanning Electron Microscopy, and static and dynamic gas sensing tests. The effects of ageing, the recovery gas, the synthetic approach, and zinc concentration were investigated. Results demonstrated that ageing of the precursor sols leads to a worsening of gas sensing performance ascribable to an excessive thickness of the films and a change in morphology. Two different syntheses were compared, one involving the mixing of the precursor sols (M-synthesis) and the other the dissolution of the Zn precursor into the WO3 sol (S-synthesis). It was discovered that both syntheses lead to a WO3/ZnWO4 heterostructure, with different effects on film morphology. Both syntheses produced sensitive and fast gas sensors, with performance improving with decreasing zinc concentration. The S-synthesis was selected since it constitutes a simpler approach and produced films with better response and recovery speeds. The optimal zinc concentration was found to be at a Zn/(W+Zn) molar ratio of 0.067 as it produced the most sensitive films, due to a combination of morphological and compositional factors, such as grain refinement, porosity and formation of heterostructures. The prepared films showed good response (ΔAbs(λ=870nm) = 0.2 at 100°C), fast response and recovery (15-50s) and stability over 10 cycles at 150°C.File | Dimensione | Formato | |
---|---|---|---|
Berghino_Sebastiano.pdf
accesso aperto
Dimensione
4.44 MB
Formato
Adobe PDF
|
4.44 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/75508