Cyanobacteria are photosynthetic microorganisms that played a crucial role in the evolution of life on Earth: they were the first organisms capable of performing oxygenic photosynthesis and, by differentiating and spreading widely, they caused a significant enrichment of oxygen on the planet. The colonization of a wide range of environments by cyanobacteria was made possible by evolutionary adaptations to various environmental factors, including extreme light conditions, such as light wavelengths in the near-infrared or "far-red" region. The effective use of far-red light for oxygenic photosynthesis is possible in some cyanobacteria species thanks to FaRLiP acclimation (Far Red Light Photoacclimation), which allows them to perform photosynthesis when the light spectrum available to the organisms is poor in visible light and rich in far-red light. FaRLiP acclimation involves the reorganization of the photosynthetic complex, with modifications of the phycobilisome subunits and the reaction centers of photosystem II, enabling the cyanobacterium to extend the range of light wavelengths it can use for photosynthesis. Chroococcidiopsis thermalis PCC 7203 is an extremophilic cyanobacterium known for its ability to survive in extreme environments such as hot springs, deserts, and hypogean environments. Its adaptability to far-red light conditions, enabled by its capacity to undergo FaRLiP acclimation, makes it an ideal model organism for studying the molecular and biochemical mechanisms of light acclimation in environments poor in visible light and rich in far-red light. This thesis aims to characterize FaRLiP acclimation and its activation in Chroococcidiopsis thermalis PCC 7203, comparing it to the condition of sunlight exposure. The main objective is to analyze, through biochemical and spectroscopic techniques, the changes in pigments and photosynthetic components involved in the acclimation process, also investigating the differences in the mechanisms of protection against oxidative damage in the photosynthetic apparatuses under the two conditions considered. The results of this research will contribute to a better understanding of light acclimation processes in cyanobacteria and could have relevant biotechnological applications, such as the cultivation and bioengineering of microbial cultures in low-light environments or in the context of space exploration.
I cianobatteri sono microrganismi fotosintetici che hanno avuto un ruolo cruciale nell'evoluzione della vita sulla Terra: sono stati i primi organismi in grado di effettuare la fotosintesi ossigenica e, differenziandosi e diffondendosi ampiamente, hanno causato un severo arricchimento in ossigeno nel pianeta. La colonizzazione di una vasta gamma di ambienti da parte dei cianobatteri è stata permessa da adattamenti evolutivi a diversi fattori ambientali, fra cui condizioni di luce estreme, ad esempio la luce di lunghezze d'onda nel vicino infrarosso o "far-red". L’impiego efficace della luce far red per la fotosintesi ossigenica è possibile in alcune specie di cianobatteri grazie all’acclimatazione FaRLiP (Far Red Light Photoacclimation), che consente di svolgere la fotosintesi quando lo spettro luminoso che gli organismi ricevono è scarso in luce visibile e ricco in luce far-red. L’acclimatazione FaRLiP comporta la riorganizzazione del complesso fotosintetico, con la modifica delle subunità dei ficobilisomi e dei centri di reazione del fotosistema II, consentendo al cianobatterio di estendere la gamma delle lunghezze d'onda della luce che può utilizzare per la fotosintesi. Chroococcidiopsis thermalis PCC 7203 è un cianobatterio estremofilo noto per la sua capacità di sopravvivere in ambienti estremi come sorgenti termali, deserti e ambienti ipogei. La sua adattabilità a condizioni di luce far-red, permessa dalla sua capacità di svolgere l’acclimatazione FaRLiP, lo rende un organismo modello ideale per studiare i meccanismi molecolari e biochimici dell'acclimatazione alla luce in ambienti poveri di luce visibile e ricchi in luce far-red. La presente tesi si propone di caratterizzare l’acclimatazione FaRLiP e la sua attivazione in Chroococcidiopsis thermalis PCC 7203, comparandolo alla condizione di luce solare. L'obiettivo principale è analizzare attraverso tecniche biochimiche, e spettroscopiche i cambiamenti nei pigmenti e nelle componenti fotosintetiche coinvolte nel processo di acclimatazione, indagando inoltre le differenze nei meccanismi di protezione dai danni ossidativi negli apparati fotosintetici delle due condizioni considerate. I risultati di questa ricerca contribuiranno a una maggiore comprensione dei processi di acclimatazione alla luce nei cianobatteri e potrebbero avere applicazioni biotecnologiche rilevanti, come la coltivazione e la bioingegneria di colture microbiche in ambienti con scarsa illuminazione o in contesti di esplorazione spaziali.
Caratterizzazione Biochimica di Chroococcidiopsis thermalis PCC 7203 Acclimatato a Luce Solare e Far-Red.
BALLARIN, SAMUELE
2023/2024
Abstract
Cyanobacteria are photosynthetic microorganisms that played a crucial role in the evolution of life on Earth: they were the first organisms capable of performing oxygenic photosynthesis and, by differentiating and spreading widely, they caused a significant enrichment of oxygen on the planet. The colonization of a wide range of environments by cyanobacteria was made possible by evolutionary adaptations to various environmental factors, including extreme light conditions, such as light wavelengths in the near-infrared or "far-red" region. The effective use of far-red light for oxygenic photosynthesis is possible in some cyanobacteria species thanks to FaRLiP acclimation (Far Red Light Photoacclimation), which allows them to perform photosynthesis when the light spectrum available to the organisms is poor in visible light and rich in far-red light. FaRLiP acclimation involves the reorganization of the photosynthetic complex, with modifications of the phycobilisome subunits and the reaction centers of photosystem II, enabling the cyanobacterium to extend the range of light wavelengths it can use for photosynthesis. Chroococcidiopsis thermalis PCC 7203 is an extremophilic cyanobacterium known for its ability to survive in extreme environments such as hot springs, deserts, and hypogean environments. Its adaptability to far-red light conditions, enabled by its capacity to undergo FaRLiP acclimation, makes it an ideal model organism for studying the molecular and biochemical mechanisms of light acclimation in environments poor in visible light and rich in far-red light. This thesis aims to characterize FaRLiP acclimation and its activation in Chroococcidiopsis thermalis PCC 7203, comparing it to the condition of sunlight exposure. The main objective is to analyze, through biochemical and spectroscopic techniques, the changes in pigments and photosynthetic components involved in the acclimation process, also investigating the differences in the mechanisms of protection against oxidative damage in the photosynthetic apparatuses under the two conditions considered. The results of this research will contribute to a better understanding of light acclimation processes in cyanobacteria and could have relevant biotechnological applications, such as the cultivation and bioengineering of microbial cultures in low-light environments or in the context of space exploration.File | Dimensione | Formato | |
---|---|---|---|
Ballarin_Samuele.pdf
accesso riservato
Dimensione
4.74 MB
Formato
Adobe PDF
|
4.74 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/77492