The present thesis aims to investigate the influence of LPBF (Laser Powder Bed Fusion) printing parameters on the performance of components made of aluminum alloy AlSi7Mg(0.6), a material widely used in the aerospace sector for its excellent mechanical properties, lightness and corrosion resistance. The focus was on two key parameters of the printing process: hatch spacing (spacing between successive laser passes) and layer thickness (thickness of the material addition layer), which are fundamental to control the microstructure and final properties of the components. Three values of hatch spacing (125, 150 and 175 µm) and three of layer thickness (20, 25 and 30 µm) were examined, with an analysis limited to specific combinations due to practical and energetic constraints. In particular, for hatch spacing equal to 175 µm, all the expected layer thicknesses were analyzed, while for hatch spacing of 125 µm and 150 µm only the layer thickness of 30 µm was investigated. Subsequently, a new variable, namely the orientation of the component, was introduced by varying the build direction to compare the vertically printed configurations (sample axis parallel to the build direction) with the horizontal ones (sample axis perpendicular to the build direction). The experimental work included a wide range of analyses aimed at correlating the printing parameters with the microstructural, mechanical and thermal properties of the printed material. The techniques employed included: microstructural analysis by optical and electronic microscopy (SEM); machining force measurements and chip analysis to evaluate the machinability; profilometry to characterize the surface roughness; DSC thermal analyses to evaluate the transformations of the precipitated phases; nanoindentation tests to determine the local hardness; microhardness tests. Particular attention has been paid to the relationships between microstructure and workability, with a focus on the effect of precipitated phases and on the quality of machined surfaces. The results obtained have highlighted a clear correlation between printing parameters, component orientation and final properties, showing how the optimization of hatch spacing and layer thickness, as well as the choice of the most appropriate orientation, can significantly improve the workability, surface quality and mechanical properties of the material. These observations offer concrete ideas for the use of the LPBF technique in the production of advanced structural components in the aerospace field and for further investigations on an industrial scale.
La presente tesi si propone di indagare l'influenza dei parametri di stampa tramite tecnica LPBF (Laser Powder Bed Fusion) sulle prestazioni dei componenti in lega di alluminio AlSi7Mg(0.6), materiale ampiamente utilizzato nel settore aerospaziale per le sue eccellenti proprietà meccaniche, leggerezza e resistenza alla corrosione. L'attenzione è stata rivolta in particolare a due parametri chiave del processo di stampa: l'hatch spacing (spaziatura tra i passaggi successivi del laser) e il layer thickness (spessore dello strato di addizione del materiale), fondamentali per controllare la microstruttura e le proprietà finali dei componenti. Sono stati esaminati tre valori di hatch spacing (125, 150 e 175 µm) e tre di layer thickness (20, 25 e 30 µm), con un'analisi limitata a specifiche combinazioni a causa di vincoli pratici ed energetici. In particolare, per hatch spacing pari a 175 µm, sono stati analizzati tutti i layer thickness previsti, mentre per hatch spacing di 125 µm e 150 µm si è indagato unicamente il layer thickness di 30 µm. Successivamente, si è voluto introdurre una nuova variabile, ovvero l’orientazione del componente, variando la direzione di costruzione per confrontare le configurazioni stampate verticalmente (asse del campione parallelo alla direzione di costruzione) con quelle orizzontali (asse del campione perpendicolare alla direzione di costruzione). Il lavoro sperimentale ha incluso una vasta gamma di analisi volte a correlare i parametri di stampa con le proprietà microstrutturali, meccaniche e termiche del materiale stampato. Le tecniche impiegate hanno incluso: analisi microstrutturale tramite microscopia ottica ed elettronica (SEM); misurazioni delle forze di lavorazione e analisi dei trucioli per valutare la lavorabilità meccanica; profilometria per la caratterizzazione della rugosità superficiale; analisi termiche DSC per valutare le trasformazioni delle fasi precipitate; prove di nanoindentazione per determinare la durezza locale; prove di microdurezza. Particolare attenzione è stata dedicata alle relazioni tra microstruttura e lavorabilità, con un focus sull'effetto delle fasi precipitate e sulla qualità delle superfici lavorate. I risultati ottenuti hanno evidenziato una chiara correlazione tra i parametri di stampa, l’orientazione del componente e le proprietà finali, mostrando come l'ottimizzazione di hatch spacing e layer thickness, nonché la scelta dell’orientazione più adeguata, possano migliorare significativamente la lavorabilità, la qualità superficiale e le proprietà meccaniche del materiale. Queste osservazioni offrono spunti concreti per l'impiego della tecnica LPBF nella produzione di componenti strutturali avanzati in ambito aerospaziale e per ulteriori approfondimenti su scala industriale.
Influenza dei parametri di stampa LPBF sulla lavorabilità alle macchine utensili dei componenti in lega di alluminio AlSi7Mg(0.6)
PAGGIO, MICHELE
2023/2024
Abstract
The present thesis aims to investigate the influence of LPBF (Laser Powder Bed Fusion) printing parameters on the performance of components made of aluminum alloy AlSi7Mg(0.6), a material widely used in the aerospace sector for its excellent mechanical properties, lightness and corrosion resistance. The focus was on two key parameters of the printing process: hatch spacing (spacing between successive laser passes) and layer thickness (thickness of the material addition layer), which are fundamental to control the microstructure and final properties of the components. Three values of hatch spacing (125, 150 and 175 µm) and three of layer thickness (20, 25 and 30 µm) were examined, with an analysis limited to specific combinations due to practical and energetic constraints. In particular, for hatch spacing equal to 175 µm, all the expected layer thicknesses were analyzed, while for hatch spacing of 125 µm and 150 µm only the layer thickness of 30 µm was investigated. Subsequently, a new variable, namely the orientation of the component, was introduced by varying the build direction to compare the vertically printed configurations (sample axis parallel to the build direction) with the horizontal ones (sample axis perpendicular to the build direction). The experimental work included a wide range of analyses aimed at correlating the printing parameters with the microstructural, mechanical and thermal properties of the printed material. The techniques employed included: microstructural analysis by optical and electronic microscopy (SEM); machining force measurements and chip analysis to evaluate the machinability; profilometry to characterize the surface roughness; DSC thermal analyses to evaluate the transformations of the precipitated phases; nanoindentation tests to determine the local hardness; microhardness tests. Particular attention has been paid to the relationships between microstructure and workability, with a focus on the effect of precipitated phases and on the quality of machined surfaces. The results obtained have highlighted a clear correlation between printing parameters, component orientation and final properties, showing how the optimization of hatch spacing and layer thickness, as well as the choice of the most appropriate orientation, can significantly improve the workability, surface quality and mechanical properties of the material. These observations offer concrete ideas for the use of the LPBF technique in the production of advanced structural components in the aerospace field and for further investigations on an industrial scale.File | Dimensione | Formato | |
---|---|---|---|
Paggio_Michele.pdf
accesso riservato
Dimensione
14.09 MB
Formato
Adobe PDF
|
14.09 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/77538