In transfemoral amputees, even if the connection between the brain and external world has been disrupted, the neural pathways linking the remaining periphery and the central neural system (SNC) are still functional. This allows to design advanced prosthetic devices, as bidirectional neural interfaces, aimed at combining neurostimulation and sensory feedback with neural sensing and decoding of motor commands. While this has already been attempted for upper-limbs, the possibility of using intraneural electroneurographic recordings (ENG) to decipher lower-limb motor intentions and to be exploited for prothesis control, has not yet been explored. This would not only be beneficial in order to build more intelligent prosthetic devices, allowing a more natural gait and reduced cognitive effort, but also would give interesting insights about how our brain encodes and transmits motor commands through lower-limb peripheral nerves, as well as neurophysiological information regarding sensory and motor-neuron fibres distributions inside the leg which are still largely unknown. Although ENG-based control holds potential for enhancing selectivity and enabling a more intuitive and sophisticated form of control, its full implementation at the system level remains an open challenge. Some of the major throwbacks are linked to the computational footprint and power consumption, that could prevent the real-time and closed-loop application of this technology, but also the impracticability of recoding a large amount of experimental sessions. Some of this constraints can be overcome using a neuromorphic spike-based processing approach. In this master thesis work, we met these challenges, trying to extract neurophysiological insight from a unique dataset. Also, considering the requirements of a neuroprosthetics scenario, we designed a specific processing pipeline for lower-limb ENG and linear spiking neural network (SNN) model, that could potentially be applied locally, by being embedded at the electrode side. This architectures not only were successfully deployed to process other electrical physiological data in an energy-efficient way, but also directly emulates the dynamics and the properties of biological neurons and synapses, translating the ENG signals in their natural domain.

In amputati trasfemorali, nonostante la connessione tra il cervello ed l’ambiente esterno sia stata interrotta, le vie nervose che collegano ciò che rimane delle regioni periferiche dell’arto e il sistema nervoso centrale risultano ancora funzionanti. Ciò permettere la progettazione di dispositivi protesici avanzati, quali interfacce neurali bidirezionali, finalizzate a coniugare neurostimolazione e il tentativo di ripristinare un feedback sensoriale con la registrazione dell’attività neurale e la decodifica dei comandi motori del paziente. Sebbene questo approccio sia già stato tentato nel caso degli arti superiori, la possibilità di utilizzare segnali elettroneurografici intraneurali (ENG) per decifrare le intenzioni motori negli arti inferiori e per applicazioni relative al controllo di protesi, non è stata ancora vagliata. Ciò non solo risulterebbe vantaggioso nella progettazione di dispositivi protesici intelligenti, permettendo di riacquistare un andamento piu’ naturale e ridurre lo sforzo sia fisico che cognitivo da parte dei pazienti, ma fornirebbe interessanti intuizioni sul modo in cui il nostro cervello codifica e trasmette i comandi motori attraverso i nervi periferici delle gambe, oltre che informazioni neurofisiologiche riguardanti la distribuzione di fibre sensoriali e motorie negli arti inferiori, finora largamente sconosciute. Nonostante algoritmi di controllo basati su ENG possiedano il potenziale per migliorare la selettività e garantire una forma di controllo piu’ intuitiva e sofisticata, la loro piena implementazione rimane una sfida aperta. Alcune delle limitazioni piu’ stringenti sono legate al peso computazionale e al consumo energetico, che impedirebbero la loro applicazione in contesti real-time e per tecnologie closed-loop, ma anche all’impossibilità di raccogliere numerose sessioni sperimentali. Alcuni di questi ostacoli possono essere superati utilizzando un approccio di elaborazione neuromorfico, basato su spike encoding. In questo lavoro di tesi abbiamo accettato la sfida, tentando di estrarre informazioni neurofisiologiche a partire da un dataset unico nel suo genere. Inoltre, considerando i requisiti di uno scenario neurobionico, abbiamo progettato una nuova pipeline di elaborazione di segnali ENG lower-limb e un modello lineare di rete neurale a spike (Spiking Neural Network, SNN), che potrebbe potenzialmente essere applicato localmente, venendo incorporato a livello di elettrodo. Questo tipo di architetture non solo sono già stata applicate con successo per l’analisi di altri segnali elettrofisiolofici in modo energeticamente efficiente, ma inoltre permettono direttamente di emulare le proprià e le dinamiche di neuroni e sinapsi biologiche, riconducendo i segnali ENG nel loro dominio naturale.

Neuromorphic Event-based processing of intraneural recordings in transfemoral amputees for motor intention decoding

ROSSI, CECILIA
2023/2024

Abstract

In transfemoral amputees, even if the connection between the brain and external world has been disrupted, the neural pathways linking the remaining periphery and the central neural system (SNC) are still functional. This allows to design advanced prosthetic devices, as bidirectional neural interfaces, aimed at combining neurostimulation and sensory feedback with neural sensing and decoding of motor commands. While this has already been attempted for upper-limbs, the possibility of using intraneural electroneurographic recordings (ENG) to decipher lower-limb motor intentions and to be exploited for prothesis control, has not yet been explored. This would not only be beneficial in order to build more intelligent prosthetic devices, allowing a more natural gait and reduced cognitive effort, but also would give interesting insights about how our brain encodes and transmits motor commands through lower-limb peripheral nerves, as well as neurophysiological information regarding sensory and motor-neuron fibres distributions inside the leg which are still largely unknown. Although ENG-based control holds potential for enhancing selectivity and enabling a more intuitive and sophisticated form of control, its full implementation at the system level remains an open challenge. Some of the major throwbacks are linked to the computational footprint and power consumption, that could prevent the real-time and closed-loop application of this technology, but also the impracticability of recoding a large amount of experimental sessions. Some of this constraints can be overcome using a neuromorphic spike-based processing approach. In this master thesis work, we met these challenges, trying to extract neurophysiological insight from a unique dataset. Also, considering the requirements of a neuroprosthetics scenario, we designed a specific processing pipeline for lower-limb ENG and linear spiking neural network (SNN) model, that could potentially be applied locally, by being embedded at the electrode side. This architectures not only were successfully deployed to process other electrical physiological data in an energy-efficient way, but also directly emulates the dynamics and the properties of biological neurons and synapses, translating the ENG signals in their natural domain.
2023
Neuromorphic Event-based processing of intraneural recordings in transfemoral amputees for motor intention decoding
In amputati trasfemorali, nonostante la connessione tra il cervello ed l’ambiente esterno sia stata interrotta, le vie nervose che collegano ciò che rimane delle regioni periferiche dell’arto e il sistema nervoso centrale risultano ancora funzionanti. Ciò permettere la progettazione di dispositivi protesici avanzati, quali interfacce neurali bidirezionali, finalizzate a coniugare neurostimolazione e il tentativo di ripristinare un feedback sensoriale con la registrazione dell’attività neurale e la decodifica dei comandi motori del paziente. Sebbene questo approccio sia già stato tentato nel caso degli arti superiori, la possibilità di utilizzare segnali elettroneurografici intraneurali (ENG) per decifrare le intenzioni motori negli arti inferiori e per applicazioni relative al controllo di protesi, non è stata ancora vagliata. Ciò non solo risulterebbe vantaggioso nella progettazione di dispositivi protesici intelligenti, permettendo di riacquistare un andamento piu’ naturale e ridurre lo sforzo sia fisico che cognitivo da parte dei pazienti, ma fornirebbe interessanti intuizioni sul modo in cui il nostro cervello codifica e trasmette i comandi motori attraverso i nervi periferici delle gambe, oltre che informazioni neurofisiologiche riguardanti la distribuzione di fibre sensoriali e motorie negli arti inferiori, finora largamente sconosciute. Nonostante algoritmi di controllo basati su ENG possiedano il potenziale per migliorare la selettività e garantire una forma di controllo piu’ intuitiva e sofisticata, la loro piena implementazione rimane una sfida aperta. Alcune delle limitazioni piu’ stringenti sono legate al peso computazionale e al consumo energetico, che impedirebbero la loro applicazione in contesti real-time e per tecnologie closed-loop, ma anche all’impossibilità di raccogliere numerose sessioni sperimentali. Alcuni di questi ostacoli possono essere superati utilizzando un approccio di elaborazione neuromorfico, basato su spike encoding. In questo lavoro di tesi abbiamo accettato la sfida, tentando di estrarre informazioni neurofisiologiche a partire da un dataset unico nel suo genere. Inoltre, considerando i requisiti di uno scenario neurobionico, abbiamo progettato una nuova pipeline di elaborazione di segnali ENG lower-limb e un modello lineare di rete neurale a spike (Spiking Neural Network, SNN), che potrebbe potenzialmente essere applicato localmente, venendo incorporato a livello di elettrodo. Questo tipo di architetture non solo sono già stata applicate con successo per l’analisi di altri segnali elettrofisiolofici in modo energeticamente efficiente, ma inoltre permettono direttamente di emulare le proprià e le dinamiche di neuroni e sinapsi biologiche, riconducendo i segnali ENG nel loro dominio naturale.
Electroneurography
Signal Processing
Neuromorphic
Motor Control
SNN
File in questo prodotto:
File Dimensione Formato  
Rossi_Cecilia.pdf

embargo fino al 02/12/2027

Dimensione 25.54 MB
Formato Adobe PDF
25.54 MB Adobe PDF

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/77624