The articular cartilage is a specialized tissue which plays a key role in the functioning of joints composing the musculoskeletal system. The main roles of the articular cartilage are to facilitate the fluid motion between the bone surfaces, and to deploy the high loads developed during locomotion. These functions are provided by the particular structure of the articular cartilage, which is a biphasic tissue composed by a solid, i.e., extracellular matrix, and liquid, i.e., interstitial fluid, phases. The interaction between extracellular matrix and interstitial fluid provide the viscoelastic behavior of the tissue. The avascular structure of the articular cartilage and its complex structure – a mix of specialized cells, chondrocytes, within the extracellular matrix – reduce the self-repair capability of the itself. Therefore, the articular cartilage is highly exposed to traumatic and degenerative diseases, e.g., osteoarthritis. The assessment of the biomechanical and structural features of the osteochondral unit is essential to understand the degenerative processes peculiar of musculoskeletal pathologies and, thus, to develop targeted preventive and therapeutic treatments. Among the clinical imaging currently employed to the clinical investigation of the joints, X-ray based techniques allow to measure the distance between the articular surfaces, but without taking into account the cartilage tissue due to the lack of a mineralised phase. A suitable option to visualize the cartilage tissue through such imaging techniques entails the use of contrast agents. A current study suggests the effectiveness of an experimental contrast agent (CA4+) in making the articular cartilage radiopaque. Such a contrast agent diffuses within the tissue by taking advantage of the negatively charged molecules, i.e., proteoglycans, composing the extracellular matrix of the articular cartilage. The main aim of this thesis is to evaluate if eventual alterations induced by the experimental contrast agent (CA4+) on the cartilage mechanical properties are reversible, i.e., if the impact of CA4+ can be mitigated by a dynamic washout. First, the dynamic washout was performed on cartilage samples excised from bovine knees and monitored by X-ray imaging (computed microtomography) with the purpose of defining the minimum time required to reduce the attenuation provided by the contrast agent up to 99%. Afterward, alterations of the tissue mechanical behavior and their reversibility were evaluated by indentation tests performed on the cartilage of the osteochondral samples. The experimental activities were performed at the Medical Technology Laboratory of the Rizzoli Orthopedically Institute in Bologna.
La cartilagine articolare è un tessuto specializzato che svolge un ruolo importante all'interno del sistema muscolo-scheletrico, contribuendo al corretto funzionamento delle articolazioni. Le principali funzioni della cartilagine articolare sono facilitare il movimento fluido tra le superfici ossee, e distribuire e sopportare i carichi elevati che si sviluppano durante le attività quotidiane. Queste funzioni sono garantite dalla particolare struttura della cartilagine articolare che è un tessuto bifasico, composto da una matrice extracellulare solida e un fluido interstiziale. L’interazione delle due componenti determina il comportamento viscoelastico della cartilagine. La struttura avascolare del tessuto cartilagineo e la complessa organizzazione della matrice extracellulare, nella quale sono immersi i condrociti (le cellule specializzate della cartilagine articolare), limitano la capacità riparativa della cartilagine articolare. Questo rende la cartilagine vulnerabile a danni e degenerazione, come l'osteoartrosi. Approfondire le caratteristiche biomeccaniche e strutturali dell'unità osteocondrale è essenziale per comprendere i processi di degenerazione e per sviluppare trattamenti preventivi e terapeutici mirati. Alcune tecniche di imaging attualmente utilizzate per la valutazione clinica delle articolazioni usano le radiazioni ionizzanti. Tali tecniche permetto di visualizzare lo spessore della rima articolare, senza però visualizzare la cartilagine articolare in quanto non contiene una fase mineralizzata. Uno dei possibili approcci per rendere visibile la cartilagine contempla l’utilizzo di mezzi di contrasto. Uno studio in corso ha dimostrato l’efficacia di un mezzo di contrasto sperimentale (CA4+) nel rendere radiopaca la cartilagine articolare. Tale mezzo di contrasto si diffonde nel tessuto sfruttando la presenza di cariche negative distribuite all’interno della cartilagine articolare. Questo lavoro di tesi ha l’obiettivo di valutare se eventuali modifiche delle proprietà meccaniche del tessuto cartilagineo prodotte dal mezzo di contrasto sperimentale (CA4+) siano permanenti o reversibili, cioè se possano essere mitigate attraverso un lavaggio dinamico. Inizialmente, il lavaggio dinamico è stato eseguito su campioni di cartilagine prelevati da ginocchio bovino, e monitorato tramite imaging a raggi X (microtomografia computerizzata) al fine di definire il tempo minimo necessario per ridurre di circa il 99% il grado di attenuazione ottenuto con il mezzo di contrasto. Successivamente, le alterazioni indotte dal mezzo di contrasto sul comportamento meccanico della cartilagine articolare e la reversibilità di tali alterazioni sono state valutate mediante prove di indentazione eseguite sulla cartilagine di campioni di unità osteocondrale. Le attività sperimentali sono state eseguite presso il Laboratorio di Tecnologia Medica dell'Istituto Ortopedico Rizzoli di Bologna.
Mezzi di contrasto per imaging a raggi X della cartilagine articolare: reversibilità dell’effetto di un mezzo di contrasto sperimentale sulle proprietà meccaniche del tessuto
BIGI, SIRIA
2023/2024
Abstract
The articular cartilage is a specialized tissue which plays a key role in the functioning of joints composing the musculoskeletal system. The main roles of the articular cartilage are to facilitate the fluid motion between the bone surfaces, and to deploy the high loads developed during locomotion. These functions are provided by the particular structure of the articular cartilage, which is a biphasic tissue composed by a solid, i.e., extracellular matrix, and liquid, i.e., interstitial fluid, phases. The interaction between extracellular matrix and interstitial fluid provide the viscoelastic behavior of the tissue. The avascular structure of the articular cartilage and its complex structure – a mix of specialized cells, chondrocytes, within the extracellular matrix – reduce the self-repair capability of the itself. Therefore, the articular cartilage is highly exposed to traumatic and degenerative diseases, e.g., osteoarthritis. The assessment of the biomechanical and structural features of the osteochondral unit is essential to understand the degenerative processes peculiar of musculoskeletal pathologies and, thus, to develop targeted preventive and therapeutic treatments. Among the clinical imaging currently employed to the clinical investigation of the joints, X-ray based techniques allow to measure the distance between the articular surfaces, but without taking into account the cartilage tissue due to the lack of a mineralised phase. A suitable option to visualize the cartilage tissue through such imaging techniques entails the use of contrast agents. A current study suggests the effectiveness of an experimental contrast agent (CA4+) in making the articular cartilage radiopaque. Such a contrast agent diffuses within the tissue by taking advantage of the negatively charged molecules, i.e., proteoglycans, composing the extracellular matrix of the articular cartilage. The main aim of this thesis is to evaluate if eventual alterations induced by the experimental contrast agent (CA4+) on the cartilage mechanical properties are reversible, i.e., if the impact of CA4+ can be mitigated by a dynamic washout. First, the dynamic washout was performed on cartilage samples excised from bovine knees and monitored by X-ray imaging (computed microtomography) with the purpose of defining the minimum time required to reduce the attenuation provided by the contrast agent up to 99%. Afterward, alterations of the tissue mechanical behavior and their reversibility were evaluated by indentation tests performed on the cartilage of the osteochondral samples. The experimental activities were performed at the Medical Technology Laboratory of the Rizzoli Orthopedically Institute in Bologna.| File | Dimensione | Formato | |
|---|---|---|---|
|
Bigi_Siria.pdf
embargo fino al 05/12/2027
Dimensione
3.4 MB
Formato
Adobe PDF
|
3.4 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/78051