Among the tumor pathologies affecting the urinary system, bladder carcinoma is the most commonly diagnosed, ranking tenth among the most common cancers. The European Association of Urology (EAU) guidelines indicate radical cystectomy as the gold standard therapeutic strategy. This surgical operation involves the total removal of the urinary tract organs and the creation of a urinary diversion using a segment of the patient’s intestine. However, the reconstruction of the removed structures to restore urinary function can result in numerous postoperative complications. The negative impact of these complications on the patient's quality of life highlights the need for alternative strategies to autologous transplantation. An innovative project emerges from tissue engineering strategies, which could improve surgical interventions by reducing intraoperative risks and postoperative complications. The research presented in this thesis is set in this context and proposes the creation of a hybrid conduit as a possible alternative candidate for urinary diversion, combining decellularized porcine small intestine submucosa (SIS) with a polycarbonate urethane (Chronoflex AR). The combined use of a synthetic material and a biological tissue is based on the idea of merging the benefits of both, overcoming their respective limitations. The SIS provides the material with properties such as bioactivity and biocompatibility, while the polymer improves the mechanical and functional properties of the final construct. The objective of this thesis is to biomechanically compare the hybrid conduit and its individual components to highlight the specific contribution of each material. Ring tensile tests and membrane flexure tests were performed to characterize the construct’s behavior and evaluate its suitability for the intended application. From the analysis of the two components used in the scaffold construction (SIS and Chronoflex AR), it can be concluded that polyurethane has greater tensile strength and elastic modulus compared to SIS, influencing the mechanical properties of the latter when they are combined.
Tra le patologie tumorali che interessano l’apparato urinario, il carcinoma della vescica rappresenta quella più comunemente diagnosticata, posizionandosi al decimo posto tra i tumori più diffusi. Le linee guida dell’Associazione Europea di Urologia (EAU) indicano come strategia terapeutica gold standard la cistectomia radicale, un’operazione chirurgica che implica l’asportazione totale degli organi delle vie urinarie e la realizzazione di una diversione urinaria attraverso l’utilizzo di un segmento intestinale del paziente. L’intervento di ricostruzione delle strutture rimosse, al fine di ripristinare la funzionalità urinaria, può comportare però numerose complicanze post-operatorie. L’ impatto negativo che tali complicanze hanno sulla qualità di vita del paziente, rende necessaria la ricerca di strategie differenti al trapianto autologo. Un progetto innovativo deriva dalle strategie di ingegneria tissutale che potrebbero migliorare l’intervento chirurgico, riducendo i rischi intraoperatori e le complicanze post-chirurgiche. Il lavoro di ricerca presentato in questa tesi si colloca in questo contesto e vede la realizzazione di un condotto ibrido come possibile candidato alternativo per la diversione urinaria, accoppiando la sottomucosa dell’intestino tenue porcino (SIS) decellularizzata con un policarbonato uretano (Chronoflex AR). L’utilizzo combinato di un materiale sintetico e di un tessuto biologico si basa sull’idea di poter combinare i benefici di entrambi, superando le rispettive limitazioni. La SIS garantisce al materiale caratteristiche quali bioattività e biocompatibilità, mentre il polimero migliora le proprietà meccaniche e funzionali del costrutto finale. Obiettivo di questa tesi è confrontare dal punto di vista biomeccanico il condotto ibrido e le sue singole componenti con lo scopo di evidenziare lo specifico contributo apportato da i due materiali componenti. Sono state eseguite prove di trazione ad anello e test di flessione membranale per caratterizzare il comportamento del costrutto e evidenziarne l’adeguatezza rispetto all’applicazione prevista. Dall’analisi dei due componenti impiegati nella realizzazione dello scaffold (SIS e Chronoflex AR) si può concludere come il poliuretano abbia resistenza a trazione e modulo elastico maggiori rispetto alla SIS, influendo sulle proprietà meccaniche di quest’ultima quando risultano accoppiati.
Caratterizzazione meccanica delle componenti di un condotto urinario bioingegnerizzato ottenuto combinando matrice decellularizzata di sottomucosa intestinale suina con un policarbonato uretano
GALTAROSSA, ALICE
2023/2024
Abstract
Among the tumor pathologies affecting the urinary system, bladder carcinoma is the most commonly diagnosed, ranking tenth among the most common cancers. The European Association of Urology (EAU) guidelines indicate radical cystectomy as the gold standard therapeutic strategy. This surgical operation involves the total removal of the urinary tract organs and the creation of a urinary diversion using a segment of the patient’s intestine. However, the reconstruction of the removed structures to restore urinary function can result in numerous postoperative complications. The negative impact of these complications on the patient's quality of life highlights the need for alternative strategies to autologous transplantation. An innovative project emerges from tissue engineering strategies, which could improve surgical interventions by reducing intraoperative risks and postoperative complications. The research presented in this thesis is set in this context and proposes the creation of a hybrid conduit as a possible alternative candidate for urinary diversion, combining decellularized porcine small intestine submucosa (SIS) with a polycarbonate urethane (Chronoflex AR). The combined use of a synthetic material and a biological tissue is based on the idea of merging the benefits of both, overcoming their respective limitations. The SIS provides the material with properties such as bioactivity and biocompatibility, while the polymer improves the mechanical and functional properties of the final construct. The objective of this thesis is to biomechanically compare the hybrid conduit and its individual components to highlight the specific contribution of each material. Ring tensile tests and membrane flexure tests were performed to characterize the construct’s behavior and evaluate its suitability for the intended application. From the analysis of the two components used in the scaffold construction (SIS and Chronoflex AR), it can be concluded that polyurethane has greater tensile strength and elastic modulus compared to SIS, influencing the mechanical properties of the latter when they are combined.File | Dimensione | Formato | |
---|---|---|---|
Galtarossa_Alice.pdf
accesso riservato
Dimensione
3.41 MB
Formato
Adobe PDF
|
3.41 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/78069