This thesis aims to develop virtual sensors using various multivariate regression techniques to predict quality parameters in a resin production process.

This thesis aims to develop virtual sensors using various multivariate regression techniques to predict quality parameters in a resin production process.

Development of machine learning methods for soft-sensing in resin manufacturing

SCRAMONCIN, DEVIS
2023/2024

Abstract

This thesis aims to develop virtual sensors using various multivariate regression techniques to predict quality parameters in a resin production process.
2023
Development of machine learning methods for soft-sensing in resin manufacturing
This thesis aims to develop virtual sensors using various multivariate regression techniques to predict quality parameters in a resin production process.
Machine Learning
virtual sensor
soft-sensor
resin
File in questo prodotto:
File Dimensione Formato  
Scramoncin_Devis.pdf

accesso riservato

Dimensione 3.03 MB
Formato Adobe PDF
3.03 MB Adobe PDF

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/78087