The objective of the thesis is to study the behavior of the adaptive management of a Multi-Leg-Smart-Charging-Infrastructure by enhancing the short-term booking by electric vehicles and the assignment of the optimal stall imposed at the entrance of the charging station. The model will be validated in the Matlab environment by setting up an optimization process which will have the objective of minimizing the global losses of the entire system while ensuring compliance with all constraints imposed on the network and vehicle side. Specifically, we started from a basic 'day-ahead' management model, which, by predicting the entirety of the data needed at the beginning of the analysis time, would not allow the management of the infrastructure in a real-time manner. Maintaining the same objective, a model was therefore developed that allows adaptive analysis of only what is known at the start time of the simulation. Different scenarios of vehicle fleets will be studied in a basic scenario of the created infrastructure. In conclusion, the capacity of the infrastructure to manage top-ups in an adaptive way in critical and favorable network conditions will be studied; to define the quality of the results, these will be compared with the results obtained from the 'day-ahead' management which, once the scenarios have been set, is the model that presents the best management of the system.
L’obbiettivo dell’elaborato è quello di studiare il comportamento della gestione adattiva di una Multi-Leg-Smart-Charging-Infrastructure andando a valorizzare la prenotazione a breve termine da parte dei veicoli elettrici e l’assegnazione dello stallo ottimale imposto all’ingresso della stazione di ricarica. Il modello verrà validato in ambiente Matlab attraverso l’impostazione di un processo di ottimizzazione che avrà l’obbiettivo di minimizzare le perdite globali dell’intero sistema garantendo al contempo il rispetto di tutti i vincoli imposti lato rete e lato veicoli. Nello specifico, si è partiti da un modello base a gestione ‘day-ahead’, il quale, prevedendo l’interezza dei dati necessari all’inizio del tempo di analisi, non permetterebbe la gestione dell’infrastruttura in modo real-time. Mantenendo lo stesso obbiettivo, si è quindi elaborato un modello che permette di analizzare in modo adattivo solo ciò che è noto all’orario di inizio simulazione. Saranno studiati diversi scenari di flotte di veicoli in uno scenario base dell’infrastruttura creata. In conclusione, verrà studiata la capacità dell’infrastruttura a gestire delle ricariche in modo adattivo in condizioni critiche e favorevoli di rete; per definire la bontà dei risultati, questi, verranno confrontati con i risultati ottenuti dalla gestione ‘day-ahead’ che, fissati gli scenari, è il modello che presenta la migliore gestione del sistema.
Gestione adattiva di una infrastruttura di ricarica innovativa e identificazione dei principali elementi di influenza
SOLDERA, MARCO
2023/2024
Abstract
The objective of the thesis is to study the behavior of the adaptive management of a Multi-Leg-Smart-Charging-Infrastructure by enhancing the short-term booking by electric vehicles and the assignment of the optimal stall imposed at the entrance of the charging station. The model will be validated in the Matlab environment by setting up an optimization process which will have the objective of minimizing the global losses of the entire system while ensuring compliance with all constraints imposed on the network and vehicle side. Specifically, we started from a basic 'day-ahead' management model, which, by predicting the entirety of the data needed at the beginning of the analysis time, would not allow the management of the infrastructure in a real-time manner. Maintaining the same objective, a model was therefore developed that allows adaptive analysis of only what is known at the start time of the simulation. Different scenarios of vehicle fleets will be studied in a basic scenario of the created infrastructure. In conclusion, the capacity of the infrastructure to manage top-ups in an adaptive way in critical and favorable network conditions will be studied; to define the quality of the results, these will be compared with the results obtained from the 'day-ahead' management which, once the scenarios have been set, is the model that presents the best management of the system.File | Dimensione | Formato | |
---|---|---|---|
Soldera_Marco.pdf
accesso riservato
Dimensione
7.46 MB
Formato
Adobe PDF
|
7.46 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/78322