One of the key challenges of the twenty-first century is the fight against climate change. Reducing greenhouse gas emissions and the integration of various renewable energy sources are crucial steps in minimizing pollution (Parlamento Europeo, Green Deal, 2018). Among these renewable energies there is bioethanol, produced through fermentation by yeasts from waste materials derived from the food industry based on starch (first-generation technologies) or lignocellulosic materials (second-generation technologies) (Guo et al., 2015). The latter requires substantial treatment to make fermentable sugars accessible (Lennartsson et al., 2014). However, second-generation technologies face challenges with fermentation yields, primarily due to the generation of by-products such as weak acids and HMF during the treatment process (Lennartsson et al., 2014). These by-products can limit yeast growth, resulting in unsatisfactory bioethanol production yields that do not meet industrial standards. To overcome these issues, yeast production protocols should be developed to ensure sustainable industrial yields, both in terms of yeast biomass produced on sugar consumed and final bioethanol output. Two strains of Saccharomyces cerevisiae, Fp89 and Fp90, were selected to evaluate their suitability for production as Active Dry Yeast (ADY), as they exhibited optimal performance during fermentation in synthetic media supplemented with formic acid (Favaro et al., 2013). The performance of these two strains was compared to that of the reference strain D20, a well-performing strain in terms of biomass production and ethanol yields during wine fermentation, obtained from the strains collection of Italiana Biotecnologie S.r.l. A production protocol was developed, starting with inoculum cultivated in synthetic media, followed by a scale-up process in molasses on a small scale using bioreactors. Initial propagations were conducted in batch mode, with a final propagation in fed-batch mode. The biomass harvested from the fed-batch process was subjected to drying, optimizing the time/temperature combination to produce ADY with sufficient dry matter content, while meeting the expected compositional characteristics provided by Italiana Biotecnologie’s database and maintaining cell viability. Once the protocol was established, a modification was introduced in the fed-batch phase, adding formic acid to investigate differences in terms of biomass production and drying processes. Finally, fermentation trials were conducted in synthetic media and molasses, using both ADY and fresh cultures, to assess ethanol production yield and ensure that the production process did not negatively impact the final ethanol yields.
Una delle sfide del ventunesimo secolo è far fronte al cambiamento climatico. La riduzione dei gas serra e l'introduzione, nonché la commistione, di energie rinnovabili provenienti da diverse fonti è uno dei punti critici per ridurre l'inquinamento (Parlamento Europeo, Green Deal, 2018). Tra queste energie rinnovabili troviamo il bioetanolo. Esso viene prodotto per fermentazione a carico di lieviti a partire da matrici di scarto dell'industria alimentare a base amidacea (tecnologie di prima generazione) o matrici lignocellulosiche (tecnologie di seconda generazione) (Guo et al., 2015). Le matrici lignocellulosiche subiscono un trattamento impattante che rende disponibile gli zuccheri fermentabili (Lennartsson et al., 2014). Il problema con le tecnologie di seconda generazione è la resa di fermentazione non soddisfacente a causa della produzione di composti secondari come acidi deboli e HMF durante il trattamento della matrice (Lennartsson et al., 2014) che comporta una limitata crescita del lievito e conseguentemente una resa di produzione di bioetanolo non soddisfacente per gli standard industriali. La produzione di lievito necessita di protocolli di produzione che riescano a garantire rese industrialmente sostenibili sia per quanto riguarda la produzione della biomassa di lievito che per la resa alcolica finale. Due ceppi di Saccharomyces cerevisiae, Fp89 e Fp90, sono stati selezionati per testare la loro idoneità alla produzione come Lievito Secco Attivo (LSA), in quanto hanno dimostrato prestazioni ottimali in fermentazione su un mezzo sintetico addizionato con acido formico. Le prestazioni dei due ceppi sono state confrontate con quelle del ceppo di riferimento D20, noto per le sue elevate capacità di produzione di biomassa e resa in etanolo durante la fermentazione del vino, proveniente dalla ceppoteca di Italiana Biotecnologie S.r.l. È stato sviluppato un protocollo di produzione che prevede l'utilizzo di inoculi coltivati su mezzi sintetici, con successivo processo di scale-up su melasso a scala ridotta in bioreattori. Le propagazioni sono state eseguite inizialmente in modalità batch, seguite da una propagazione finale in modalità fed-batch. La biomassa ottenuta da quest'ultima fase è stata sottoposta a un processo di essiccamento, ottimizzando il binomio tempo/temperatura per produrre LSA con un adeguato contenuto di sostanza secca, rispettando le caratteristiche compositive attese, secondo i dati del database aziendale di Italiana Biotecnologie, e garantendo il mantenimento della vitalità. Dopo la messa a punto del protocollo, è stata introdotta una modifica nella fase di fed-batch, aggiungendo acido formico, per verificare eventuali differenze in termini di biomassa prodotta e processi di essiccamento. Infine, sono state condotte prove di fermentazione sia su mezzo sintetico che su melasso, utilizzando LSA e colture fresche, al fine di valutare la resa nella produzione di etanolo e verificare che il processo produttivo non compromettesse la resa finale di etanolo.
Sviluppo di un protocollo di produzione per ceppi di lievito per il bioetanolo
PIRAS, ELISA
2023/2024
Abstract
One of the key challenges of the twenty-first century is the fight against climate change. Reducing greenhouse gas emissions and the integration of various renewable energy sources are crucial steps in minimizing pollution (Parlamento Europeo, Green Deal, 2018). Among these renewable energies there is bioethanol, produced through fermentation by yeasts from waste materials derived from the food industry based on starch (first-generation technologies) or lignocellulosic materials (second-generation technologies) (Guo et al., 2015). The latter requires substantial treatment to make fermentable sugars accessible (Lennartsson et al., 2014). However, second-generation technologies face challenges with fermentation yields, primarily due to the generation of by-products such as weak acids and HMF during the treatment process (Lennartsson et al., 2014). These by-products can limit yeast growth, resulting in unsatisfactory bioethanol production yields that do not meet industrial standards. To overcome these issues, yeast production protocols should be developed to ensure sustainable industrial yields, both in terms of yeast biomass produced on sugar consumed and final bioethanol output. Two strains of Saccharomyces cerevisiae, Fp89 and Fp90, were selected to evaluate their suitability for production as Active Dry Yeast (ADY), as they exhibited optimal performance during fermentation in synthetic media supplemented with formic acid (Favaro et al., 2013). The performance of these two strains was compared to that of the reference strain D20, a well-performing strain in terms of biomass production and ethanol yields during wine fermentation, obtained from the strains collection of Italiana Biotecnologie S.r.l. A production protocol was developed, starting with inoculum cultivated in synthetic media, followed by a scale-up process in molasses on a small scale using bioreactors. Initial propagations were conducted in batch mode, with a final propagation in fed-batch mode. The biomass harvested from the fed-batch process was subjected to drying, optimizing the time/temperature combination to produce ADY with sufficient dry matter content, while meeting the expected compositional characteristics provided by Italiana Biotecnologie’s database and maintaining cell viability. Once the protocol was established, a modification was introduced in the fed-batch phase, adding formic acid to investigate differences in terms of biomass production and drying processes. Finally, fermentation trials were conducted in synthetic media and molasses, using both ADY and fresh cultures, to assess ethanol production yield and ensure that the production process did not negatively impact the final ethanol yields.File | Dimensione | Formato | |
---|---|---|---|
Elisa_Piras_2074320.pdf
accesso riservato
Dimensione
3.06 MB
Formato
Adobe PDF
|
3.06 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/78685