The evolution of herbicide resistant (HR) weeds has become a major agricultural issue. Relying on chemical herbicides is no longer sustainable and new solutions for crop protection need to be developed. Among them, exploiting plant RNA interference (RNAi) machinery to develop small interfering RNAs (siRNAs) with herbicidal activity is gaining popularity. Many challenges need to be addressed, such as ensuring the stability of double-strand RNA (dsRNAs) formulation and their effective delivery through leaf barriers. At the same time, it is pivotal to find gene targets whose silencing results in a lethal phenotype or significantly reduces the weed's fitness. To determine whether a gene is suitable for this purpose, RNAi triggering through Virus-Induced Gene Silencing (VIGS) has emerged as a valid option on a laboratory scale. In this study, the Tobacco Rattle Virus (TRV) was used to test different genes: phytoene desaturase (PDS), acetolactate synthase (ALS) and Cullin-1 (CUL1). The first gene, PDS, was used in similar trials as virus infection control due to its bleaching effect on the plants. ALS is a target for common chemical herbicides, against which various types of resistance have evolved. In contrast, CUL1 represents a so-called “undruggable” target, whose knock-out is associated with a lethal phenotype in Arabidopsis thaliana. After establishing the correct protocol to obtain the “bleaching phenotype” in the weed Solanum nigrum L. through PDS silencing, the silencing effects of the candidate targets were tested. The experiments were conducted on both S. nigrum and the model plant Nicotiana benthamiana. ALS silencing resulted in a lethal phenotype in the model plant while CUL1 silencing led to suboptimal growth compared to untreated plants. Several trials were also conducted on the weed Amaranthus hybridus L., though none yielded a positive outcome. Further tests will be necessary to confirm the effectiveness of silencing in weed species, this is also due to the so-called "weediness", i.e. the reluctance of weeds to be affected by biotic and abiotic stress.

Lo sviluppo della resistenza nei confronti degli erbicidi rappresenta una delle principali sfide odierne in ambito agrario. Affidarsi esclusivamente ai classici diserbanti non è più sostenibile, e risulta quindi necessario sviluppare nuove soluzioni per la protezione delle colture. Fra le proposte, l’impiego di un meccanismo molecolare, conosciuto come RNA interference (RNAi), che potrebbe consentire lo sviluppo di small interfering RNA (siRNA) ad attività erbicida, sta acquisendo sempre più notorietà. Per raggiungere l’obiettivo si dovranno affrontare molteplici sfide, come garantire la stabilità della formulazione a base di double-strand RNA (dsRNA) e la sua efficace somministrazione attraverso le barriere fogliari. Allo stesso tempo, sarà cruciale individuare geni target il cui silenziamento provochi un fenotipo letale o riduca significativamente la fitness dell'infestante. Per determinare se un gene sia adatto a tale scopo, l’induzione di RNAi tramite Virus-Induced Gene Silencing (VIGS) è emersa come una valida opzione in un contesto sperimentale. In questo studio, Tobacco Rattle Virus (TRV) è stato utilizzato per testare diversi geni: phytoene desaturase (PDS), acetolactate synthase (ALS) and Cullin-1 (CUL1). Il primo gene, PDS, è stato usato come controllo positivo in vari esperimenti preliminari, in quanto il suo silenziamento determina il “bleaching phenotype”: uno sbiancamento osservato solo nelle piante correttamente infettate. ALS è un target comune per erbicidi chimici, contro il quale si sono evolute diverse tipologie di resistenza. CUL1 rappresenta invece un target “undraggable”, quindi non utilizzabile dai comuni erbicidi, il cui knock-out è stato associato ad un fenotipo letale in Arabidopsis thaliana. Dopo aver stabilito il protocollo corretto per ottenere il “bleaching phenotype” nell’infestante Solanum nigrum L., sono stati testati gli effetti del silenziamento degli altri due geni candidati. Gli esperimenti sono stati condotti sia su S. nigrum che sulla pianta modello Nicotiana benthamiana. Il silenziamento di ALS si è rivelato letale nella pianta modello, mentre il silenziamento di CUL1 ha causato una crescita subottimale rispetto alle piante non trattate. Diversi esperimenti sono stati inoltre condotti sull’infestante Amaranthus hybridus L., sebbene nessuno abbia prodotto esiti positivi. In futuro saranno necessari ulteriori test per confermare l’efficacia del silenziamento nelle specie infestanti, anche a causa della loro cosiddetta “weediness”, ossia la riluttanza a subire effetti dovuti a stress biotici e abiotici.

Discovering targets for RNAi-based herbicides through VIGS (Virus-Induced Gene Silencing)

OTTAVIANI, FRANCESCA
2023/2024

Abstract

The evolution of herbicide resistant (HR) weeds has become a major agricultural issue. Relying on chemical herbicides is no longer sustainable and new solutions for crop protection need to be developed. Among them, exploiting plant RNA interference (RNAi) machinery to develop small interfering RNAs (siRNAs) with herbicidal activity is gaining popularity. Many challenges need to be addressed, such as ensuring the stability of double-strand RNA (dsRNAs) formulation and their effective delivery through leaf barriers. At the same time, it is pivotal to find gene targets whose silencing results in a lethal phenotype or significantly reduces the weed's fitness. To determine whether a gene is suitable for this purpose, RNAi triggering through Virus-Induced Gene Silencing (VIGS) has emerged as a valid option on a laboratory scale. In this study, the Tobacco Rattle Virus (TRV) was used to test different genes: phytoene desaturase (PDS), acetolactate synthase (ALS) and Cullin-1 (CUL1). The first gene, PDS, was used in similar trials as virus infection control due to its bleaching effect on the plants. ALS is a target for common chemical herbicides, against which various types of resistance have evolved. In contrast, CUL1 represents a so-called “undruggable” target, whose knock-out is associated with a lethal phenotype in Arabidopsis thaliana. After establishing the correct protocol to obtain the “bleaching phenotype” in the weed Solanum nigrum L. through PDS silencing, the silencing effects of the candidate targets were tested. The experiments were conducted on both S. nigrum and the model plant Nicotiana benthamiana. ALS silencing resulted in a lethal phenotype in the model plant while CUL1 silencing led to suboptimal growth compared to untreated plants. Several trials were also conducted on the weed Amaranthus hybridus L., though none yielded a positive outcome. Further tests will be necessary to confirm the effectiveness of silencing in weed species, this is also due to the so-called "weediness", i.e. the reluctance of weeds to be affected by biotic and abiotic stress.
2023
Discovering targets for RNAi-based herbicides through VIGS (Virus-Induced Gene Silencing)
Lo sviluppo della resistenza nei confronti degli erbicidi rappresenta una delle principali sfide odierne in ambito agrario. Affidarsi esclusivamente ai classici diserbanti non è più sostenibile, e risulta quindi necessario sviluppare nuove soluzioni per la protezione delle colture. Fra le proposte, l’impiego di un meccanismo molecolare, conosciuto come RNA interference (RNAi), che potrebbe consentire lo sviluppo di small interfering RNA (siRNA) ad attività erbicida, sta acquisendo sempre più notorietà. Per raggiungere l’obiettivo si dovranno affrontare molteplici sfide, come garantire la stabilità della formulazione a base di double-strand RNA (dsRNA) e la sua efficace somministrazione attraverso le barriere fogliari. Allo stesso tempo, sarà cruciale individuare geni target il cui silenziamento provochi un fenotipo letale o riduca significativamente la fitness dell'infestante. Per determinare se un gene sia adatto a tale scopo, l’induzione di RNAi tramite Virus-Induced Gene Silencing (VIGS) è emersa come una valida opzione in un contesto sperimentale. In questo studio, Tobacco Rattle Virus (TRV) è stato utilizzato per testare diversi geni: phytoene desaturase (PDS), acetolactate synthase (ALS) and Cullin-1 (CUL1). Il primo gene, PDS, è stato usato come controllo positivo in vari esperimenti preliminari, in quanto il suo silenziamento determina il “bleaching phenotype”: uno sbiancamento osservato solo nelle piante correttamente infettate. ALS è un target comune per erbicidi chimici, contro il quale si sono evolute diverse tipologie di resistenza. CUL1 rappresenta invece un target “undraggable”, quindi non utilizzabile dai comuni erbicidi, il cui knock-out è stato associato ad un fenotipo letale in Arabidopsis thaliana. Dopo aver stabilito il protocollo corretto per ottenere il “bleaching phenotype” nell’infestante Solanum nigrum L., sono stati testati gli effetti del silenziamento degli altri due geni candidati. Gli esperimenti sono stati condotti sia su S. nigrum che sulla pianta modello Nicotiana benthamiana. Il silenziamento di ALS si è rivelato letale nella pianta modello, mentre il silenziamento di CUL1 ha causato una crescita subottimale rispetto alle piante non trattate. Diversi esperimenti sono stati inoltre condotti sull’infestante Amaranthus hybridus L., sebbene nessuno abbia prodotto esiti positivi. In futuro saranno necessari ulteriori test per confermare l’efficacia del silenziamento nelle specie infestanti, anche a causa della loro cosiddetta “weediness”, ossia la riluttanza a subire effetti dovuti a stress biotici e abiotici.
Herbicide resistance
RNAi
VIGS
File in questo prodotto:
File Dimensione Formato  
Ottaviani_Francesca.pdf

accesso riservato

Dimensione 4.67 MB
Formato Adobe PDF
4.67 MB Adobe PDF

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/79735