Spiropyran-merocyanine molecular switches in their open protonated form (hereafter referred to as MCHs) can react in the presence of visible light to release a proton in a persistent and reversible manner. For this reason, these compounds constitute the most representative family of “metastable-state photoacids”. The ability of MCHs to reversibly release/uptake a proton when subjected to visible light irradiation can be used as tool to achieve spatiotemporal control over any acid-sensitive system, and found applications ranging from self-assembly to catalysis and energy storage. The magnitude and the reiteration of proton release cycles by a given MCH in aqueous solutions, however, results from a delicate interplay between photoacidity, water solubility, and chemical stability. The former, which is defined as the difference in acidity of the ground state and the metastable state, usually lays below the four pK units, whereas the latter do not exceed the sub-millimolar regime and a half-life of one day, respectively. This Thesis project explores the possibility of improving all these unfavourable characteristics by supramolecular encapsulation of MCHs into macrocyclic host molecules. It will be shown that functionalization of the parent MCH skeleton with a p-methylen(methylimidazolium chloride) group at the chromene side affords a compound suitable to be encapsulated within the cavity of cucurbit[7]uril (a commercially available macrocycle made of seven glucoluril units linked by methylene bridges), resulting in a photoactive 1:1 host-guest complex featuring enhanced photoacidity, fatigue resistance, and stability towards hydrolysis. The methodology developed here enables the production of “light-switchable buffer” solutions whose pH can be tuned from 7 down to 3 over 48 consecutive hours by using mild 500 nm light.
Gli interruttori molecolari spiropirano-merocianina nella loro forma protonata aperta (di seguito indicati come MCHs) possono reagire in presenza di luce visibile per rilasciare un protone in modo persistente e reversibile. Per questa ragione, tali composti rappresentano la famiglia più significativa dei cosiddetti “fotoacidi a stato metastabile”. La capacità degli MCHs di rilasciare/assorbire protoni in maniera reversibile in seguito ad assorbimento di luce visibile può essere sfruttata per controllare spazialmente e temporalmente sistemi sensibili agli acidi, trovando applicazioni che spaziano dall’autoassemblaggio alla catalisi e allo stoccaggio di energia. Tuttavia, l’entità e la reiterazione dei cicli di rilascio protonico di un MCH in soluzione acquosa derivano da un delicato equilibrio tra la loro fotoacidità, solubilità in acqua e stabilità chimica. La prima, definita come la differenza di acidità tra lo stato fondamentale e lo stato metastabile, solitamente non supera le quattro unità di pK, mentre la solubilità e la stabilità non vanno oltre rispettivamente ad un regime sub-millimolare ed un’emivita di un giorno. Questo progetto di Tesi esplora la possibilità di migliorare tutte queste caratteristiche sfavorevoli attraverso l’incapsulamento supramolecolare degli MCHs in particolari molecole organiche macrocicliche. Verrà mostrato che la funzionalizzazione della struttura molecolare base degli MCHs con un gruppo p-metilen(metilimidazolio cloruro) sul lato benzocromenico consente di ottenere un composto in grado di essere incapsulato nella cavità del cucurbit[7]uril (un macrociclo commercialmente disponibile composto da sette unità di glucoluril legate da ponti metilenici). Il complesso supramolecolare che ne deriva risulta fotoattivo, e caratterizzato da una maggiore fotoacidità, resistenza alla fatica e stabilità all’idrolisi. La metodologia sviluppata permette la produzione di “soluzioni tampone commutabili alla luce”, il cui pH può essere modulato tra 7 e 3 fino a 48 ore consecutive utilizzando luce visibile a 500 nm.
Miglioramento delle prestazioni dei fotoacidi merocianinici in acqua mediante complessazione supramolecolare
SCAPIN, JOSEPH
2023/2024
Abstract
Spiropyran-merocyanine molecular switches in their open protonated form (hereafter referred to as MCHs) can react in the presence of visible light to release a proton in a persistent and reversible manner. For this reason, these compounds constitute the most representative family of “metastable-state photoacids”. The ability of MCHs to reversibly release/uptake a proton when subjected to visible light irradiation can be used as tool to achieve spatiotemporal control over any acid-sensitive system, and found applications ranging from self-assembly to catalysis and energy storage. The magnitude and the reiteration of proton release cycles by a given MCH in aqueous solutions, however, results from a delicate interplay between photoacidity, water solubility, and chemical stability. The former, which is defined as the difference in acidity of the ground state and the metastable state, usually lays below the four pK units, whereas the latter do not exceed the sub-millimolar regime and a half-life of one day, respectively. This Thesis project explores the possibility of improving all these unfavourable characteristics by supramolecular encapsulation of MCHs into macrocyclic host molecules. It will be shown that functionalization of the parent MCH skeleton with a p-methylen(methylimidazolium chloride) group at the chromene side affords a compound suitable to be encapsulated within the cavity of cucurbit[7]uril (a commercially available macrocycle made of seven glucoluril units linked by methylene bridges), resulting in a photoactive 1:1 host-guest complex featuring enhanced photoacidity, fatigue resistance, and stability towards hydrolysis. The methodology developed here enables the production of “light-switchable buffer” solutions whose pH can be tuned from 7 down to 3 over 48 consecutive hours by using mild 500 nm light.File | Dimensione | Formato | |
---|---|---|---|
Scapin_Joseph.pdf
accesso riservato
Dimensione
5.78 MB
Formato
Adobe PDF
|
5.78 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/80307