Vanadium flow batteries utilize vanadium in various oxidation states to store electrical energy. Unlike traditional batteries, power and energy are decoupled and can be scaled independently, making them suitable for long-duration energy storage (LDES) applications, defined as capable of charge/discharge durations exceeding 8 hours. This type of grid service is becoming increasingly important due to the growing penetration of non-dispatchable renewable energy sources. This work focuses on the development of a multiphysics model, initially in 2D and subsequently in 3D, using COMSOL Multiphysics to describe self-discharge phenomena resulting from crossover in these batteries. Crossover involves the migration of charged species (reactants) between the two electrodes through the membrane without electrochemical reactions, thereby transferring electrical work to the grid. In this thesis, these mechanisms affecting the efficiency and longevity of the battery are numerically simulated. The model is designed to integrate the electrochemical kinetics of the cell with fluid dynamics, allowing for a comprehensive and detailed description of the physical phenomena involved in crossover. For the model implementation, the FAP-Q-330 membrane from Fumasep (Fumatech GmbH, Germany) was selected, utilizing data from the literature and conducting experimental tests. This approach enabled the extraction of key parameters necessary for an accurate description of crossover processes. Finally, the model was validated through experimental measurements of self-discharge profiles conducted within the Electrochemical Energy Storage and Conversion Lab (EESCoLab), allowing for verification of the accuracy of the simulations and their potential to enhance the design and control of these batteries.
Le batterie a flusso di vanadio utilizzano il vanadio in diversi stati di ossidazione per accumulare energia elettrica. A differenza delle batterie tradizionali, potenza ed energia sono disaccoppiate e dimensionabili in maniera indipendente, rendendole idonee per servizi di accumulo di lunga durata (Long Duration Energy Storage, LDES) ovvero utilizzabili per durate di carica/scarica maggiori di 8 ore. Questo tipo di servizi di rete sta assumendo importanza via via crescente a causa dell'aumento della penetrazione di produzione di energia elettrica da fonti rinnovabili non programmabili. Questo lavoro si concentra sullo sviluppo di un modello multifisico, prima in 2D e successivamente in 3D, in ambiente COMSOL Multiphysics al fine di descrivere i fenomeni di autoscarica dovuti al crossover di queste batterie. Il crossover consiste nella migrazione di parte delle specie cariche (reagenti) tra i due elettrodi attraverso la membrana senza che queste reagiscano per via elettrochimica trasferendo lavoro elettrico alla rete. In questo lavoro di tesi si sono simulati numericamente questi meccanismi che affliggono l’efficienza e la durata della batteria. Il modello è stato concepito per integrare la cinetica elettrochimica della cella con la parte fluidodinamica, permettendo una descrizione completa e dettagliata dei fenomeni fisici coinvolti nel crossover. Per la realizzazione del modello è stata selezionata la membrana FAP-Q-330 di Fumasep (Fumatech GmbH, Germany), utilizzando dati tratti dalla letteratura ed eseguendo prove sperimentali. Questo ha permesso di ottenere i parametri chiave necessari per una descrizione accurata dei processi di crossover. Infine, il modello è stato validato attraverso misurazioni sperimentali dei profili di autoscarica svolti all'interno dell' Electrochemical Energy Storage and Conversion lab (EESCoLab), consentendo di verificare l'accuratezza delle simulazioni e il loro potenziale per migliorare il design e il controllo di queste batterie.
Modelling of crossover phenomena in Vanadium Redox flow batteries
MAIORANA, VINCENZO
2023/2024
Abstract
Vanadium flow batteries utilize vanadium in various oxidation states to store electrical energy. Unlike traditional batteries, power and energy are decoupled and can be scaled independently, making them suitable for long-duration energy storage (LDES) applications, defined as capable of charge/discharge durations exceeding 8 hours. This type of grid service is becoming increasingly important due to the growing penetration of non-dispatchable renewable energy sources. This work focuses on the development of a multiphysics model, initially in 2D and subsequently in 3D, using COMSOL Multiphysics to describe self-discharge phenomena resulting from crossover in these batteries. Crossover involves the migration of charged species (reactants) between the two electrodes through the membrane without electrochemical reactions, thereby transferring electrical work to the grid. In this thesis, these mechanisms affecting the efficiency and longevity of the battery are numerically simulated. The model is designed to integrate the electrochemical kinetics of the cell with fluid dynamics, allowing for a comprehensive and detailed description of the physical phenomena involved in crossover. For the model implementation, the FAP-Q-330 membrane from Fumasep (Fumatech GmbH, Germany) was selected, utilizing data from the literature and conducting experimental tests. This approach enabled the extraction of key parameters necessary for an accurate description of crossover processes. Finally, the model was validated through experimental measurements of self-discharge profiles conducted within the Electrochemical Energy Storage and Conversion Lab (EESCoLab), allowing for verification of the accuracy of the simulations and their potential to enhance the design and control of these batteries.File | Dimensione | Formato | |
---|---|---|---|
Maiorana_Vincenzo.pdf
accesso aperto
Dimensione
9.16 MB
Formato
Adobe PDF
|
9.16 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/81033