Wastewater treatment is a critical industrial process, and the efficiency of the machines used in these applications plays a key role in energy consumption and environmental impact. Traditionally, vacuum evaporators coupled with heat pumps are widely used for wastewater treatment. These systems have historically relied on synthetic refrigerants, which offer excellent thermodynamic properties but pose environmental concerns due to their high Global Warming Potential (GWP). With the increasing push for sustainability, there is a growing interest in replacing traditional refrigerants with low-GWP, non-flammable refrigerants. This thesis presents a numerical analysis of a heat pump integrated into a vacuum evaporator system, focusing on its operation with both subcritical and transcritical cycles. The first part of the study examines the performance of the heat pump using synthetic refrigerant blends that operate in subcritical cycles. These synthetic refrigerants are non-flammable, classified as A1 according to safety standards, and feature low GWP, making them environmentally safer alternatives to traditional refrigerants. The second part of the thesis investigates the performance of the same heat pump when operating with natural CO₂ in a transcritical cycle. CO₂ is a natural refrigerant with a GWP of 1, making it one of the most environmentally benign options available, while also being A1 non-flammable. However, the thermodynamic behavior of CO₂ in transcritical cycles differs significantly from subcritical operations, which impacts the system’s performance and efficiency. This study provides a detailed comparative analysis of these two approaches by modeling the heat transfer and thermodynamic behavior of both subcritical and transcritical cycles.
Il trattamento delle acque reflue è un processo industriale fondamentale, e l'efficienza delle macchine utilizzate in queste applicazioni gioca un ruolo chiave nel consumo energetico e nell'impatto ambientale. Tradizionalmente, gli evaporatori sottovuoto accoppiati a pompe di calore sono ampiamente utilizzati per il trattamento delle acque reflue. Questi sistemi hanno storicamente fatto affidamento su refrigeranti sintetici, che offrono eccellenti proprietà termodinamiche ma pongono preoccupazioni ambientali a causa del loro elevato potenziale di riscaldamento globale (Global Warming Potential, GWP). Con la crescente spinta verso la sostenibilità, c'è un interesse crescente nel sostituire i refrigeranti tradizionali con refrigeranti a basso GWP e non infiammabili. Questa tesi presenta un'analisi numerica di una pompa di calore integrata in un sistema di evaporatore sottovuoto, focalizzandosi sul suo funzionamento sia con cicli sottocritici che transcritici. La prima parte dello studio esamina le prestazioni della pompa di calore utilizzando miscele di refrigeranti sintetici che operano in cicli sottocritici. Questi refrigeranti sintetici sono non infiammabili, classificati come A1 secondo le normative di sicurezza, e presentano un basso GWP, rendendoli alternative ambientalmente più sicure rispetto ai refrigeranti tradizionali. La seconda parte della tesi indaga le prestazioni della stessa pompa di calore quando opera con CO₂ naturale in un ciclo transcritico. La CO₂ è un refrigerante naturale con un GWP di 1, rendendola una delle opzioni più ecologiche disponibili, oltre ad essere non infiammabile di classe A1. Tuttavia, il comportamento termodinamico della CO₂ nei cicli transcritici differisce significativamente dalle operazioni sottocritiche, il che incide sulle prestazioni e sull'efficienza del sistema. Questo studio fornisce un'analisi comparativa dettagliata di questi due approcci, modellando il trasferimento di calore e il comportamento termodinamico dei cicli sottocritici e transcritici.
Numerical study of a vacuum evaporator operating with a heat pump: results for non-flammable synthetic refrigerants and carbon dioxide as working fluids
MARRAZZO, CARMINE
2023/2024
Abstract
Wastewater treatment is a critical industrial process, and the efficiency of the machines used in these applications plays a key role in energy consumption and environmental impact. Traditionally, vacuum evaporators coupled with heat pumps are widely used for wastewater treatment. These systems have historically relied on synthetic refrigerants, which offer excellent thermodynamic properties but pose environmental concerns due to their high Global Warming Potential (GWP). With the increasing push for sustainability, there is a growing interest in replacing traditional refrigerants with low-GWP, non-flammable refrigerants. This thesis presents a numerical analysis of a heat pump integrated into a vacuum evaporator system, focusing on its operation with both subcritical and transcritical cycles. The first part of the study examines the performance of the heat pump using synthetic refrigerant blends that operate in subcritical cycles. These synthetic refrigerants are non-flammable, classified as A1 according to safety standards, and feature low GWP, making them environmentally safer alternatives to traditional refrigerants. The second part of the thesis investigates the performance of the same heat pump when operating with natural CO₂ in a transcritical cycle. CO₂ is a natural refrigerant with a GWP of 1, making it one of the most environmentally benign options available, while also being A1 non-flammable. However, the thermodynamic behavior of CO₂ in transcritical cycles differs significantly from subcritical operations, which impacts the system’s performance and efficiency. This study provides a detailed comparative analysis of these two approaches by modeling the heat transfer and thermodynamic behavior of both subcritical and transcritical cycles.File | Dimensione | Formato | |
---|---|---|---|
Marrazzo_Carmine.pdf
accesso riservato
Dimensione
5.18 MB
Formato
Adobe PDF
|
5.18 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/81034