Abstract G-quadruplexes (G4) and i-motifs (iM) are non-canonical nucleic acid structures that form in guanine-rich and cytosine-rich sequences, respectively. Genome-wide mapping studies in human cells have shown that these structures are distributed across the genome, with a notable enrichment in promoter regions, suggesting roles in gene expression regulation. However, their formation and functions during the cell cycle remain poorly understood. This study aims to develop and apply synchronization protocols to investigate G4 and iM formation across distinct cell cycle phases (G0/G1, G1/S boundary, and S-phase) using fixed-cell immunofluorescence and live-cell genome-wide CUT&Tag (Cleavage Under Targets and Tagmentation) techniques. Two synchronization methods, double thymidine block and mimosine treatment, were tested for G1/S boundary and S-phase synchronization, while serum starvation was used for G0/G1 arrest. Experiments in MCF-7 and HEK293T cells revealed cell type-specific synchronization efficiency, evaluated through flow cytometry following propidium iodide staining. Only MCF-7 cells were found to be effectively synchronized: 28 hours of serum starvation for G0/G1 and 24 hours of mimosine treatment for G1/S boundary followed by 4-hours release for S-phase arrest. Detection of G4s and iMs using BG4 and iMab antibodies, respectively, in synchronized fixed MCF-7 cells revealed increased formation of both structures during S-phase, as observed through immunofluorescence imaging. This enhancement is potentially attributed to the open chromatin state characteristic of this phase due to high replication rates. Conversely, in the G0/G1 phase, where chromatin is more condensed, we detected the lowest signals. At the G1/S boundary, the intensity of G4 and iM foci within the cells was intermediate between those observed in G0/G1 and S-phases. Then, we established, for the first time, a CUT&Tag experimental setup using BG4 and iMab antibodies in synchronized MCF-7 cells. This cutting-edge immunoprecipitation technique was employed to investigate nuclear G4s and iMs formation in a cell cycle phase-dependent manner in live cells. CUT&Tag genomic profiles revealed differential enrichment patterns between G4s and iMs across G0/G1, G1/S boundary, and S-phase, suggesting potentially distinct roles for these structures during cell cycle progression. In conclusion, our findings elucidate the spatiotemporal dynamics of G4s and iMs, and their interplay with cell cycle progression. This study provides a foundational resource for further investigation into the roles of G4s and iMs in genomic regulation, while also highlighting their potential as biomarkers or therapeutic targets in future applications.
Riassunto I G-quadruplex (G4) e gli i-motif (iM) sono strutture non canoniche degli acidi nucleici che si formano rispettivamente in sequenze ricche di guanina e ricche di citosina. Studi di mappatura genomica in cellule umane hanno dimostrato che queste strutture sono distribuite in tutto il genoma, con un notevole arricchimento nelle regioni promotoriali, suggerendo ruoli nella regolazione dell'espressione genica. Tuttavia, la loro formazione e le loro funzioni durante il ciclo cellulare restano poco conosciute. Questo studio mira a sviluppare e applicare protocolli di sincronizzazione per investigare la formazione di G4 e iM nelle distinte fasi del ciclo cellulare (G0/G1, confine G1/S e fase S), utilizzando tecniche di immunofluorescenza su cellule fissate e CUT&Tag (Cleavage Under Targets and Tagmentation) su cellule vive. Sono stati testati due metodi di sincronizzazione, il blocco doppio con timidina e il trattamento con mimosina, per la sincronizzazione all’interfaccia G1/S e in fase S, mentre la deprivazione di siero è stata utilizzata per l'arresto in G0/G1. Esperimenti in cellule MCF-7 e HEK293T hanno rivelato un'efficienza di sincronizzazione specifica per tipo cellulare, valutata tramite citometria a flusso successivamente a colorazione con ioduro di propidio. Solo le cellule MCF-7 sono risultate efficacemente sincronizzate: 28 ore di deprivazione di siero per la fase G0/G1 e 24 ore di trattamento con mimosina per l’interfaccia G1/S, seguito da 4 ore di rilascio per l'arresto in fase S. Il rilevamento di G4 e iM mediante anticorpi BG4 e iMab, rispettivamente, in cellule MCF-7 sincronizzate e fissate, ha rivelato un aumento della formazione di entrambe le strutture durante la fase S, come osservato attraverso immunofluorescenza. Questo incremento è potenzialmente attribuito allo stato di cromatina aperta caratteristico di questa fase, dovuto agli elevati tassi di replicazione. Al contrario, nella fase G0/G1, dove la cromatina è più condensata, abbiamo rilevato i segnali più bassi. All’interfaccia G1/S, l'intensità dei foci di G4 e iM all'interno delle cellule è intermedia tra quelle osservate nelle fasi G0/G1 e S. Successivamente, abbiamo applicato, per la prima volta, il CUT&Tag utilizzando anticorpi BG4 e iMab in cellule MCF-7 sincronizzate. Questa tecnica di immunoprecipitazione all'avanguardia è stata impiegata per investigare la formazione nucleare di G4 e iM in maniera dipendente dalla fase del ciclo cellulare in cellule vive. I profili genomici di CUT&Tag hanno rivelato modelli di arricchimento differenziali tra G4 e iM attraverso G0/G1, confine G1/S e fase S, suggerendo ruoli potenzialmente distinti per queste strutture durante la progressione del ciclo cellulare. In conclusione, i nostri risultati chiariscono le dinamiche spaziotemporali di G4 e iM e la loro interazione con la progressione del ciclo cellulare. Questo studio fornisce una risorsa fondamentale per ulteriori indagini sui ruoli di G4 e iM nella regolazione genomica, evidenziando anche il loro potenziale come biomarcatori o bersagli terapeutici in future applicazioni.
Mapping of non-canonical DNA structures (G4 & i-motif) along the cell cycle in human cells.
ABDELAZEEM, MOHAMED ADEL IBRAHIM
2024/2025
Abstract
Abstract G-quadruplexes (G4) and i-motifs (iM) are non-canonical nucleic acid structures that form in guanine-rich and cytosine-rich sequences, respectively. Genome-wide mapping studies in human cells have shown that these structures are distributed across the genome, with a notable enrichment in promoter regions, suggesting roles in gene expression regulation. However, their formation and functions during the cell cycle remain poorly understood. This study aims to develop and apply synchronization protocols to investigate G4 and iM formation across distinct cell cycle phases (G0/G1, G1/S boundary, and S-phase) using fixed-cell immunofluorescence and live-cell genome-wide CUT&Tag (Cleavage Under Targets and Tagmentation) techniques. Two synchronization methods, double thymidine block and mimosine treatment, were tested for G1/S boundary and S-phase synchronization, while serum starvation was used for G0/G1 arrest. Experiments in MCF-7 and HEK293T cells revealed cell type-specific synchronization efficiency, evaluated through flow cytometry following propidium iodide staining. Only MCF-7 cells were found to be effectively synchronized: 28 hours of serum starvation for G0/G1 and 24 hours of mimosine treatment for G1/S boundary followed by 4-hours release for S-phase arrest. Detection of G4s and iMs using BG4 and iMab antibodies, respectively, in synchronized fixed MCF-7 cells revealed increased formation of both structures during S-phase, as observed through immunofluorescence imaging. This enhancement is potentially attributed to the open chromatin state characteristic of this phase due to high replication rates. Conversely, in the G0/G1 phase, where chromatin is more condensed, we detected the lowest signals. At the G1/S boundary, the intensity of G4 and iM foci within the cells was intermediate between those observed in G0/G1 and S-phases. Then, we established, for the first time, a CUT&Tag experimental setup using BG4 and iMab antibodies in synchronized MCF-7 cells. This cutting-edge immunoprecipitation technique was employed to investigate nuclear G4s and iMs formation in a cell cycle phase-dependent manner in live cells. CUT&Tag genomic profiles revealed differential enrichment patterns between G4s and iMs across G0/G1, G1/S boundary, and S-phase, suggesting potentially distinct roles for these structures during cell cycle progression. In conclusion, our findings elucidate the spatiotemporal dynamics of G4s and iMs, and their interplay with cell cycle progression. This study provides a foundational resource for further investigation into the roles of G4s and iMs in genomic regulation, while also highlighting their potential as biomarkers or therapeutic targets in future applications.File | Dimensione | Formato | |
---|---|---|---|
Abdelazeem_Mohamed.pdf
accesso riservato
Dimensione
3.51 MB
Formato
Adobe PDF
|
3.51 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/81875