Wound healing is an intricate process involving several partially overlapping phases. Infections at the wound site represent a major complication, slowing and preventing the physiological process of healing. Therefore, effective infection management is crucial. In recent years, many innovative materials for wound treatment have been developed, among them polymers with antimicrobial activity, able to promote healing and prevent infection. This thesis is part of a scientific project that explores the applications of hyperbranched poly(thioglycerol) (hPG-S_8), an innovative material characterized by a high content of hydroxyl groups, making it a hydrocolloid capable of maintaining a moist wound environment, which is an ideal characteristic for wound dressings. In addition, hPG-S_8 contains elemental sulfur, conferring potential antimicrobial properties. Given this promising aspect, this work specifically focuses on investigating its antimicrobial activity. Another key feature of hPG-S_8 is its ‘green’ synthesis, which is free of toxic solvents and with a low environmental impact, making the polymer a sustainable alternative to traditional materials for wound dressings. Polymer synthesis was followed by structural and elemental characterization through NMR and CHNS analysis. Subsequently, cytotoxicity tests were conducted to assess the biocompatibility; to investigate its antimicrobial properties the material was tested against bacterial strains. However, results have shown that the antibacterial activity was not sufficient for clinical application. To improve its antibacterial performances, hPG-S_8 was loaded with tetracycline hydrochloride (TCH), a broad-spectrum antibiotic. Its efficacy was tested against bacterial strains, focusing on the determination of the Minimum Inhibitory Concentration (MIC). Results have revealed a significant improvement in the antibacterial activity after TCH loading. These data suggest that hyperbranched poly(thioglycerol), thanks to its biocompatibility, its possibility of being functionalized with therapeutic agents and its sustainability, could represent a promising innovative material in the medical field.
Il processo di guarigione di una ferita è molto complesso e si articola in diverse fasi che sono parzialmente sovrapposte tra loro. La presenza di infezioni nel sito della ferita rappresenta una grave complicazione, che rallenta e impedisce il processo fisiologico della guarigione. È quindi necessario gestire in modo efficace l’insorgenza di infezioni. Negli ultimi anni, sono stati sviluppati numerosi materiali innovativi per il trattamento delle ferite, tra questi anche dei polimeri con capacità antibatteriche, in grado di promuovere la guarigione e prevenire le infezioni. Questa tesi fa parte di un progetto scientifico che si occupa di esplorare le applicazioni del politioglicerolo iper-ramificato (hPG-S_8), un materiale innovativo caratterizzato da un alto contenuto di gruppi ossidrilici, che lo rendono un idrocolloide capace di mantenere umida la zona della ferita, caratteristica ideale per una medicazione per le ferite. Oltre a questo, hPG-S_8 è formato da zolfo elementare, che conferisce potenziali proprietà antimicrobiche. Questo lavoro si concentra principalmente sullo studio dell’attività antibatterica del politioglicerolo iper-ramificato. Un altro aspetto significativo di questo polimero è la sua sintesi ‘green’, che avviene in assenza di solventi tossici e a basso impatto ambientale, rendendolo un’alternativa sostenibile ai tradizionali materiali utilizzati come medicazioni per le ferite. Dopo la sintesi, il polimero è stato sottoposto a caratterizzazione strutturale ed elementare tramite analisi NMR e CHNS. Successivamente, per verificare la sua biocompatibilità sono stati effettuati dei test di citotossicità e per indagare le sue attività antibatteriche hPG-S_8 è stato testato contro ceppi batterici. Purtroppo, i risultati hanno evidenziato che l’attività antibatterica è insufficiente per l’applicazione clinica. Per migliorare la performance antibatterica, hPG-S_8 è stato caricato con la tetraciclina cloridrato, un antibiotico ad ampio spettro. L’efficacia è stata testata contro ceppi batterici, determinando la concentrazione minima inibitoria (MIC). I risultati ottenuti hanno mostrato un miglioramento significativo dell’attività antibatterica dopo il caricamento della tetraciclina. Questi dati suggeriscono che il politioglicerolo iper-ramificato, grazie alla sua biocompatibilità, alla sua possibilità di essere funzionalizzato con agenti terapeutici e alla sua sostenibilità, potrebbe rappresentare un valido materiale innovativo da utilizzare in ambito biomedico.
Synthesis of hyperbranched poly(thioglycerol) and investigation of its antibacterial properties for wound healing applications
MANSUTTI, GIORGIA
2024/2025
Abstract
Wound healing is an intricate process involving several partially overlapping phases. Infections at the wound site represent a major complication, slowing and preventing the physiological process of healing. Therefore, effective infection management is crucial. In recent years, many innovative materials for wound treatment have been developed, among them polymers with antimicrobial activity, able to promote healing and prevent infection. This thesis is part of a scientific project that explores the applications of hyperbranched poly(thioglycerol) (hPG-S_8), an innovative material characterized by a high content of hydroxyl groups, making it a hydrocolloid capable of maintaining a moist wound environment, which is an ideal characteristic for wound dressings. In addition, hPG-S_8 contains elemental sulfur, conferring potential antimicrobial properties. Given this promising aspect, this work specifically focuses on investigating its antimicrobial activity. Another key feature of hPG-S_8 is its ‘green’ synthesis, which is free of toxic solvents and with a low environmental impact, making the polymer a sustainable alternative to traditional materials for wound dressings. Polymer synthesis was followed by structural and elemental characterization through NMR and CHNS analysis. Subsequently, cytotoxicity tests were conducted to assess the biocompatibility; to investigate its antimicrobial properties the material was tested against bacterial strains. However, results have shown that the antibacterial activity was not sufficient for clinical application. To improve its antibacterial performances, hPG-S_8 was loaded with tetracycline hydrochloride (TCH), a broad-spectrum antibiotic. Its efficacy was tested against bacterial strains, focusing on the determination of the Minimum Inhibitory Concentration (MIC). Results have revealed a significant improvement in the antibacterial activity after TCH loading. These data suggest that hyperbranched poly(thioglycerol), thanks to its biocompatibility, its possibility of being functionalized with therapeutic agents and its sustainability, could represent a promising innovative material in the medical field.File | Dimensione | Formato | |
---|---|---|---|
Mansutti_Giorgia.pdf
embargo fino al 04/03/2028
Dimensione
1.88 MB
Formato
Adobe PDF
|
1.88 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/82358