This document presents a new panel handling system to be used in building sites. In the proposed solution, the human robot collaboration is considered as one of the core figure of the application. In this thesis, the main focus is addressed to the definition of the controller used for the proposed system. Specifically, in this work a new integrated motion control method is presented. This methodology is tailored to address potential environmental interactions encountered by a plant during its motion. The controller’s application involves empowering an operator to delineate a trajectory of a manipulator through the exertion of a force on the grasped object. This trajectory must be followed while permitting a prescribed degree of compliance, thereby facilitating soft contact with the environment. This capability enhances the system’s ability to smoothly interact with non-fixed obstacles placed along the trajectory. However, scenarios requiring sustained contact necessitate the implementation of a force-based controller. Consequently, the proposed controller integrates an admittance controller for trajectory generation and a variable position-based compliance controller to regulate interactions with the environment effectively. This proposed method is initially validated on a 1 degree of freedom (DOF) linear motor. After that, its performances are tested on a multi-DOF system.
Questo documento presenta un nuovo sistema di movimentazione di pannelli da utilizzare nei cantieri edili. Nella soluzione proposta, la collaborazione uomo-robot è considerata una delle figure di merito dell'applicazione. In questa tesi, l'attenzione principale è rivolta alla definizione del controllore utilizzato per il sistema proposto. In particolare, viene presentato un nuovo metodo integrato di controllo del movimento. Tale metodologia è progettata per affrontare le possibili interazioni ambientali che il robot può incontrare durante il suo movimento. L'applicazione del controllore prevede la possibilità per un operatore di delineare la traiettoria del manipolatore attraverso l'applicazione di una forza sull'oggetto afferrato. Tale traiettoria deve essere seguita garantendo un grado prestabilito di compliance, facilitando un contatto delicato con l'ambiente. Questo permette al sistema di interagire in modo fluido con ostacoli mobili o non fissi lungo il percorso. Tuttavia, scenari che richiedono un contatto prolungato necessitano l'implementazione di un controllore basato sulla forza. Di conseguenza, il controllore proposto integra un admittance control per la generazione della traiettoria e un variable position-based compliance controller per regolare efficacemente le interazioni con l'ambiente. Questo metodo è inizialmente validato su un motore lineare con un grado di libertà e successivamente testato su un sistema con gradi di libertà multipli.
An integrated motion control method for flexible human, robot and environment interaction
BINOTTO, ANDREA
2024/2025
Abstract
This document presents a new panel handling system to be used in building sites. In the proposed solution, the human robot collaboration is considered as one of the core figure of the application. In this thesis, the main focus is addressed to the definition of the controller used for the proposed system. Specifically, in this work a new integrated motion control method is presented. This methodology is tailored to address potential environmental interactions encountered by a plant during its motion. The controller’s application involves empowering an operator to delineate a trajectory of a manipulator through the exertion of a force on the grasped object. This trajectory must be followed while permitting a prescribed degree of compliance, thereby facilitating soft contact with the environment. This capability enhances the system’s ability to smoothly interact with non-fixed obstacles placed along the trajectory. However, scenarios requiring sustained contact necessitate the implementation of a force-based controller. Consequently, the proposed controller integrates an admittance controller for trajectory generation and a variable position-based compliance controller to regulate interactions with the environment effectively. This proposed method is initially validated on a 1 degree of freedom (DOF) linear motor. After that, its performances are tested on a multi-DOF system.File | Dimensione | Formato | |
---|---|---|---|
Binotto_Andrea.pdf
accesso riservato
Dimensione
12.2 MB
Formato
Adobe PDF
|
12.2 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/82369