This study investigates the use of stereolithography (SLA) for the production of bioceramic scaffolds intended for bone tissue engineering (BTE), employing a combination of photosensitive resin and bovine-derived hydroxyapatite (HAp) powder, provided by the company UBGEN. After printing, the scaffolds undergo debinding and sintering processes at temperatures between 800°C and 1000°C to obtain a stable and consolidated ceramic structure. During sintering, a mineralogical transformation occurs, leading to the formation of tricalcium phosphate (TCP) and other mineral phases. Although TCP has favorable properties for BTE applications, reconversion to HAp is necessary to restore the chemical-physical characteristics and replicate the mineral composition of natural bone tissue. This reconversion is carried out through a chemical treatment with a sodium phosphate solution at 80°C, a crucial step to ensure the osteogenic properties and biocompatibility of the scaffold. Sample characterization is performed using FT-IR spectroscopy (Fourier Transform Infrared Spectroscopy), an essential technique for identifying molecular vibrations and functional groups, providing detailed information about the chemical and structural transformations of the material. In addition to evaluating the structural stability of the scaffolds, the study analyzes their potential for interaction with the extracellular matrix (ECM), with particular focus on the role of HAp reconversion in promoting an optimal biological response. The work is divided into three main phases: a critical analysis of the literature to frame the scientific and technological context, a detailed description of the materials and techniques used for scaffold fabrication, and a discussion of the obtained results. Special emphasis is placed on optimizing the reconversion parameters to HAp, aiming to improve the mechanical and biological properties of the material. The results of this study could significantly contribute to the development of customized scaffolds for advanced medical applications, representing an important step towards innovative solutions in regenerative medicine.
Questo studio indaga l’utilizzo della stampa stereolitografica (SLA) per la produzione di scaffold bioceramici destinati all’ingegneria dei tessuti ossei (Bone Tissue Engineering, BTE), impiegando una combinazione di resina fotosensibile e polvere di idrossiapatite (HAp) di origine bovina, fornita dall’azienda UBGEN. A seguito della stampa, gli scaffolds sono sottoposti ai processi di debinding e sinterizzazione a temperature comprese tra 800°C e 1000°C con il fine di ottenere una struttura ceramica stabile e consolidata. Durante la sinterizzazione, si verifica una trasformazione mineralogica che conduce alla formazione di fosfato tricalcio (TCP) e altre fasi minerali. Sebbene il TCP presenti proprietà favorevoli per applicazioni BTE, è necessaria la riconversione in HAp per ripristinare le caratteristiche chimico-fisiche e replicare la composizione minerale del tessuto osseo naturale. Questa riconversione viene realizzata attraverso un trattamento chimico con una soluzione di fosfato sodico a 80 °C, un passaggio fondamentale per garantire le proprietà osteogeniche e la biocompatibilità dello scaffold. La caratterizzazione dei campioni è eseguita mediante spettroscopia FT-IR (Fourier Transform Infrared Spectroscopy), una tecnica essenziale per identificare le vibrazioni molecolari e i gruppi funzionali, fornendo informazioni dettagliate sulle trasformazioni chimiche e strutturali del materiale. Oltre a valutare la stabilità strutturale degli scaffold, lo studio analizza il loro potenziale di interazione con la matrice extracellulare (ECM), con particolare attenzione al ruolo della riconversione in HAp nel promuovere una risposta biologica ottimale. Il lavoro si articola in tre fasi principali: un’analisi critica della letteratura per inquadrare il contesto scientifico e tecnologico, una descrizione approfondita dei materiali e delle tecniche utilizzati per la realizzazione degli scaffolds e una discussione dei risultati ottenuti. Particolare enfasi è posta sull’ottimizzazione dei parametri di riconversione in HAp, con l’obiettivo di migliorare le proprietà meccaniche e biologiche del materiale. I risultati di questo studio possono contribuire significativamente allo sviluppo di scaffold personalizzati per applicazioni mediche avanzate, rappresentando un passo importante verso soluzioni innovative nella medicina rigenerativa.
Ottimizzazione di scaffold 3D derivante da idrossiapatite naturale
GIACCIO, ANNAMARIA
2024/2025
Abstract
This study investigates the use of stereolithography (SLA) for the production of bioceramic scaffolds intended for bone tissue engineering (BTE), employing a combination of photosensitive resin and bovine-derived hydroxyapatite (HAp) powder, provided by the company UBGEN. After printing, the scaffolds undergo debinding and sintering processes at temperatures between 800°C and 1000°C to obtain a stable and consolidated ceramic structure. During sintering, a mineralogical transformation occurs, leading to the formation of tricalcium phosphate (TCP) and other mineral phases. Although TCP has favorable properties for BTE applications, reconversion to HAp is necessary to restore the chemical-physical characteristics and replicate the mineral composition of natural bone tissue. This reconversion is carried out through a chemical treatment with a sodium phosphate solution at 80°C, a crucial step to ensure the osteogenic properties and biocompatibility of the scaffold. Sample characterization is performed using FT-IR spectroscopy (Fourier Transform Infrared Spectroscopy), an essential technique for identifying molecular vibrations and functional groups, providing detailed information about the chemical and structural transformations of the material. In addition to evaluating the structural stability of the scaffolds, the study analyzes their potential for interaction with the extracellular matrix (ECM), with particular focus on the role of HAp reconversion in promoting an optimal biological response. The work is divided into three main phases: a critical analysis of the literature to frame the scientific and technological context, a detailed description of the materials and techniques used for scaffold fabrication, and a discussion of the obtained results. Special emphasis is placed on optimizing the reconversion parameters to HAp, aiming to improve the mechanical and biological properties of the material. The results of this study could significantly contribute to the development of customized scaffolds for advanced medical applications, representing an important step towards innovative solutions in regenerative medicine.File | Dimensione | Formato | |
---|---|---|---|
Giaccio_Annamaria.pdf
accesso riservato
Dimensione
3.87 MB
Formato
Adobe PDF
|
3.87 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/83032