The exploration of Mars has become increasingly important over the years, requiring advanced planetary missions to study its environment. To achieve this, it is essential to land scientific instruments on the Red Planet, enabling research and analysis. During the Entry, Descent and Landing (EDL) phase, parachutes play a crucial role in slowing down the spacecraft. However, the aerodynamic behaviour of parachutes is complex and can be affected by unstable flow phenomena, which could jeopardise mission success. This study focuses on the numerical analysis of flow instabilities around a capsule-parachute system during the subsonic descent phase. The interaction between the turbulent wake of the capsule and the flow around the parachute can generate oscillations and changes in drag, affecting the stability of the system. A Large Eddy Simulation (LES) was conducted to analyse the behaviour of the flow around a rigid parachute under subsonic conditions. The compressible flow was simulated at Mach 0.2 and Reynolds 10⁵, with boundary conditions imposed using the IBM-GPFM approach. The Navier-Stokes equations were solved using the STREAmS finite element code. The simulation results were analysed in terms of instantaneous, time-averaged and fluctuating fields, highlighting the main regions of instability in the motion field. In particular, attention was paid to the parachute wake, highlighting the formation of turbulent structures that may affect the effectiveness of the deceleration system. In addition, an analysis was conducted on the dynamic performance of the system, comparing it with past simulations. This research provides new information on the aerodynamics of parachutes in subsonic regimes, offering useful insights for the design of future planetary descent systems.
L'esplorazione di Marte è diventata sempre più importante nel corso degli anni e richiede missioni planetarie avanzate per studiarne l'ambiente. Per raggiungere questo obiettivo, è essenziale far atterrare sul Pianeta Rosso gli strumenti scientifici, consentendo ricerche e analisi. Durante la fase di ingresso, discesa e atterraggio (EDL), i paracadute svolgono un ruolo cruciale nel rallentare il veicolo spaziale. Tuttavia, il comportamento aerodinamico dei paracadute è complesso e può essere influenzato da fenomeni di flusso instabile, che potrebbero compromettere il successo della missione. Questo studio si concentra sull'analisi numerica delle instabilità di flusso attorno a un sistema capsula-paracadute durante la fase di discesa subsonica. L'interazione tra la scia turbolenta della capsula e il flusso intorno al paracadute può generare oscillazioni e cambiamenti nella resistenza aerodinamica, influenzando la stabilità del sistema. Per analizzare il comportamento del flusso attorno a un paracadute rigido in condizioni subsoniche è stata condotta una simulazione Large Eddy (LES). Il flusso comprimibile è stato simulato a Mach 0,2 e Reynolds 10⁵, con condizioni al contorno imposte utilizzando l'approccio IBM-GPFM. Le equazioni di Navier-Stokes sono state risolte con il codice agli elementi finiti STREAmS. I risultati della simulazione sono stati analizzati in termini di campi istantanei, mediati nel tempo e fluttuanti, evidenziando le principali regioni di instabilità del campo di moto. In particolare, si è prestata attenzione alla scia del paracadute, evidenziando la formazione di strutture turbolente che possono influire sull'efficacia del sistema di decelerazione. Inoltre, è stata condotta un'analisi delle prestazioni dinamiche del sistema, confrontandole con le simulazioni precedenti. Questa ricerca fornisce nuove informazioni sull'aerodinamica dei paracadute in regimi subsonici, offrendo spunti utili per la progettazione di futuri sistemi di discesa planetaria.
Indagine numerica sull'instabilità del flusso nei paracadute durante il volo subsonico.
MANGANO, ALESSIA
2024/2025
Abstract
The exploration of Mars has become increasingly important over the years, requiring advanced planetary missions to study its environment. To achieve this, it is essential to land scientific instruments on the Red Planet, enabling research and analysis. During the Entry, Descent and Landing (EDL) phase, parachutes play a crucial role in slowing down the spacecraft. However, the aerodynamic behaviour of parachutes is complex and can be affected by unstable flow phenomena, which could jeopardise mission success. This study focuses on the numerical analysis of flow instabilities around a capsule-parachute system during the subsonic descent phase. The interaction between the turbulent wake of the capsule and the flow around the parachute can generate oscillations and changes in drag, affecting the stability of the system. A Large Eddy Simulation (LES) was conducted to analyse the behaviour of the flow around a rigid parachute under subsonic conditions. The compressible flow was simulated at Mach 0.2 and Reynolds 10⁵, with boundary conditions imposed using the IBM-GPFM approach. The Navier-Stokes equations were solved using the STREAmS finite element code. The simulation results were analysed in terms of instantaneous, time-averaged and fluctuating fields, highlighting the main regions of instability in the motion field. In particular, attention was paid to the parachute wake, highlighting the formation of turbulent structures that may affect the effectiveness of the deceleration system. In addition, an analysis was conducted on the dynamic performance of the system, comparing it with past simulations. This research provides new information on the aerodynamics of parachutes in subsonic regimes, offering useful insights for the design of future planetary descent systems.File | Dimensione | Formato | |
---|---|---|---|
Mangano_Alessia.pdf
accesso aperto
Dimensione
5.6 MB
Formato
Adobe PDF
|
5.6 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/84466