In recent years, electrosurgery has become an essential component in operating rooms, driving significant technological advancements in surgical instruments. The company Telea Electronic Engineering S.r.l. of Sandrigo stands out in the biomedical industry for its expertise in designing, developing, and marketing electronic devices and accessories based on QMR (Quantum Molecular Resonance) technology. The aim of this thesis is to detect the presence and type of biological tissue (patient load) in contact with the electrodes of the generator, during surgery. The detection will be done using a circuit that will be implemented within Telea’s QMR generator, the Vesalius. This feature would provide the device with intelligent feedback allowing it, for instance, to independently adjust the power delivered according to the type of tissue treated. Moreover, the detection will be useful in limiting the unwanted emission of energy. Specifically, as the Molecular Resonance generator works with a high frequency combination (range of 4-16 MHz), they could generate electromagnetic compatibility problems with other devices in the operating room, mainly when no load is present between the electrodes at the output. Therefore, it’s necessary to deliver power to the scalpel tip only when needed, so during the contact with the tissue. The engineering approach employed in this work relies on the concept of bioimpedance, an intrinsic physical property of biological tissues, that indicates their resistance to the flow of electric current. This parameter is fundamental to the application, as the measurement of impedance at the electrodes’ tip allows for a precise and reliable detection of tissue contact. The design and construction of the prototype were then carried out with the aim of developing an integrated system capable of serving as a 'proof-of-concept' for the proposed technology, demonstrating its functionality and potential for future application in the clinical field. Considering that electrosurgery can be performed both in bipolar and monopolar modes, one of the main design challenges faced was to ensure proper functioning in both cases. For the bipolar function it was essential to ensure the simultaneous coexistence of two signals operating at very different frequencies: a 200 kHz signal for impedance measurement and the QMR signal (4 MHz and harmonics) for tissue resection. For the monopolar mode, another detection circuit had to be made, since the neutral electrode capacitance significantly influences the signal and the registered impedances are higher than those detected in bipolar mode. The prototype developed was then tested under operational conditions to assess its compliance with the specified design requirements. The tests demonstrated that the system is able to correctly identify the contact of the scalpel with biological tissues and correctly classify their impedance. This work represents a significant advancement in the integration of bioimpedance into surgical applications, showcasing the feasibility of intelligent systems that can dynamically interact with tissues. It paves the way for next generation of electrosurgical devices, offering enhanced precision, safety, and personalization.
L'elettrochirurgia ha registrato negli ultimi anni un'importante diffusione nelle sale operatorie, contribuendo al progresso tecnologico degli strumenti chirurgici, rendendoli sempre più avanzati. L'azienda Telea Electronic Engineering S.r.l. di Sandrigo si distingue nel settore biomedicale per la progettazione, lo sviluppo e la commercializzazione di dispositivi e accessori elettronici basati sulla tecnologia QMR (Quantum Molecular Resonance). Lo scopo di questa tesi è quello di rilevare la presenza e il tipo di tessuto biologico (carico del paziente) in contatto con gli elettrodi del generatore, durante un’operazione chirurgica. La rilevazione avverrà tramite un circuito che dovrà essere implementato all’interno di un bisturi a QMR sviluppato da Telea, il Vesalius. Questa funzionalità doterebbe il dispositivo di feedback intelligenti permettendogli, ad esempio, di regolare autonomamente la potenza erogata in base al tipo di tessuto trattato. La rilevazione sarà utile, inoltre, per limitare le emissioni indesiderate di energia. Poiché infatti il generatore a Risonanza Molecolare lavora con una combinazione di alte frequenze (range di 4-16 MHz), queste potrebbero generare problemi di compatibilità elettromagnetica con altri dispositivi presenti in sala, soprattutto quando non è presente un carico tra gli elettrodi di uscita. Risulta pertanto cruciale erogare potenza sugli elettrodi solo al momento giusto, ovvero a contatto con il tessuto. L’approccio ingegneristico adottato in questo lavoro si fonda sul principio della bioimpedenza, una proprietà fisica intrinseca dei tessuti biologici, che rappresenta la resistenza al passaggio di corrente elettrica attraverso di essi. Questo parametro assume un ruolo chiave per il contesto applicativo, in quanto la misurazione dell’impedenza sulla punta degli elettrodi consente di determinare con precisione il contatto con il tessuto. Si è quindi proceduto alla progettazione e realizzazione del prototipo, con l’obiettivo di sviluppare un sistema integrato che potesse fungere da “proof-of-concept” per la tecnologia proposta. Considerando che l'elettrochirurgia può essere eseguita sia in modalità bipolare che in modalità monopolare, una delle principali sfide progettuali affrontate è stata quella di garantire un corretto funzionamento in entrambi i casi. Per la funzione bipolare è stato essenziale consentire la coesistenza di due segnali con frequenze molto diverse: un segnale a 200 kHz per la misurazione dell’impedenza e quello a QMR (4MHz e armoniche) per la resezione del tessuto. Per la modalità monopolare, invece, è stato necessario realizzare un altro circuito di rilevazione, in quanto la capacità dell’elettrodo neutro influenza in modo significativo il segnale e le impedenze registrate sono più alte rispetto a quelle rilevate in modalità bipolare. Il prototipo così realizzato è stato sottoposto a una serie di test in condizioni operative, con l’obiettivo di verificare la rispondenza ai requisiti progettuali. I test hanno dimostrato che il sistema è in grado di identificare correttamente il contatto del bisturi con i tessuti biologici e di classificare correttamente la loro impedenza. Questo lavoro rappresenta dunque un passo avanti nell'integrazione della bioimpedenza in applicazioni chirurgiche, evidenziando la fattibilità di sistemi intelligenti che interagiscono dinamicamente con i tessuti e gettando le basi per dispositivi elettrochirurgici di nuova generazione, più precisi, sicuri e personalizzati.
Sviluppo e Valutazioni Funzionali di un Sistema per la Rilevazione dei Tessuti in Ambito Chirurgico
ARCUCCI, MARIA CRISTINA
2024/2025
Abstract
In recent years, electrosurgery has become an essential component in operating rooms, driving significant technological advancements in surgical instruments. The company Telea Electronic Engineering S.r.l. of Sandrigo stands out in the biomedical industry for its expertise in designing, developing, and marketing electronic devices and accessories based on QMR (Quantum Molecular Resonance) technology. The aim of this thesis is to detect the presence and type of biological tissue (patient load) in contact with the electrodes of the generator, during surgery. The detection will be done using a circuit that will be implemented within Telea’s QMR generator, the Vesalius. This feature would provide the device with intelligent feedback allowing it, for instance, to independently adjust the power delivered according to the type of tissue treated. Moreover, the detection will be useful in limiting the unwanted emission of energy. Specifically, as the Molecular Resonance generator works with a high frequency combination (range of 4-16 MHz), they could generate electromagnetic compatibility problems with other devices in the operating room, mainly when no load is present between the electrodes at the output. Therefore, it’s necessary to deliver power to the scalpel tip only when needed, so during the contact with the tissue. The engineering approach employed in this work relies on the concept of bioimpedance, an intrinsic physical property of biological tissues, that indicates their resistance to the flow of electric current. This parameter is fundamental to the application, as the measurement of impedance at the electrodes’ tip allows for a precise and reliable detection of tissue contact. The design and construction of the prototype were then carried out with the aim of developing an integrated system capable of serving as a 'proof-of-concept' for the proposed technology, demonstrating its functionality and potential for future application in the clinical field. Considering that electrosurgery can be performed both in bipolar and monopolar modes, one of the main design challenges faced was to ensure proper functioning in both cases. For the bipolar function it was essential to ensure the simultaneous coexistence of two signals operating at very different frequencies: a 200 kHz signal for impedance measurement and the QMR signal (4 MHz and harmonics) for tissue resection. For the monopolar mode, another detection circuit had to be made, since the neutral electrode capacitance significantly influences the signal and the registered impedances are higher than those detected in bipolar mode. The prototype developed was then tested under operational conditions to assess its compliance with the specified design requirements. The tests demonstrated that the system is able to correctly identify the contact of the scalpel with biological tissues and correctly classify their impedance. This work represents a significant advancement in the integration of bioimpedance into surgical applications, showcasing the feasibility of intelligent systems that can dynamically interact with tissues. It paves the way for next generation of electrosurgical devices, offering enhanced precision, safety, and personalization.| File | Dimensione | Formato | |
|---|---|---|---|
|
Arcucci_MariaCristina.pdf
Accesso riservato
Dimensione
5.42 MB
Formato
Adobe PDF
|
5.42 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/84557