Use of machine learning techniques to analyze whether the inclusion of soil moisture data can improve landslide early warning systems on the SS51 Alemagna Highway.

Use of machine learning techniques to analyze whether the inclusion of soil moisture data can improve landslide early warning systems on the SS51 Alemagna Highway.

Misura dell'umidità del suolo con la tecnologia CRNS e del suo potenziale nel migliorare il sistema di pre-allerta delle frane: uno studio nella strada SS51

DEL SAVIO, ANNA
2024/2025

Abstract

Use of machine learning techniques to analyze whether the inclusion of soil moisture data can improve landslide early warning systems on the SS51 Alemagna Highway.
2024
Measuring Soil Moisture with CRNS and Its Potential to Enhance Landslide Early Warning Systems: A Study on the SS51 Highway
Use of machine learning techniques to analyze whether the inclusion of soil moisture data can improve landslide early warning systems on the SS51 Alemagna Highway.
Landslide
Early-Warning
Soil Moisture
CRNS
File in questo prodotto:
File Dimensione Formato  
Del_Savio_Anna.pdf

accesso riservato

Dimensione 12.86 MB
Formato Adobe PDF
12.86 MB Adobe PDF

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/84781