This work presents an enhanced version of the Kinodynamic Rapidly-exploring Random Tree (RRT) algorithm, specifically designed for online path planning of small fixed-wing unmanned aerial vehicles (UAVs) operating in environments constrained by obstacles. Unlike conventional RRT-based methods, which primarily focus on geometric feasibility, this approach integrates both dynamic and kinematic constraints of fixed-wing aircraft, directly into the sampling and optimization process. The proposed algorithm leverages a cost-to-go heuristic alongside a rewiring mechanism, ensuring asymptotic optimality while ensuring that the generated paths remain dynamically feasible throughout the planning process. Extensive simulations are conducted to validate the algorithm’s effectiveness, demonstrating its ability to generate collision-free, smooth, and dynamically feasible trajectories in complex 3D environments with varying obstacle densities. These simulations highlight improvements in computational efficiency and path quality compared to traditional methods. Furthermore, the algorithm’s real-world applicability is validated through flight experiments on a small fixed-wing UAV platform. The experiments confirm the robustness of the algorithm, as it successfully generates and executes dynamically feasible trajectories. The findings presented in this work offer a contribution to the field of autonomous navigation for fixed-wing UAVs, enhancing their ability to perform in obstacle-rich environments. The proposed algorithm has broad potential applications in areas such as surveillance, environmental monitoring, and disaster response, where reliable and efficient path planning is crucial for mission success.
Questo lavoro presenta una versione avanzata dell'algoritmo Kinodynamic Rapidly-exploring Random Tree (RRT), progettata per la pianificazione online della traiettoria di piccoli aerei droni ad ali fisse a guida autonoma che operano in ambienti vincolati da ostacoli. A differenza dei metodi convenzionali basati su RRT, che si concentrano principalmente su considerazioni geometriche, questo approccio integra direttamente nei processi di selezione e ottimizzazione i vincoli dinamici e cinematici dei droni ad ali fisse. L'algoritmo proposto sfrutta un'euristica applicata al cost-to-go insieme a un meccanismo di rielaborazione, garantendo ottimalità asintotica e assicurando che le traiettorie generate rimangano cinematicamente e dinamicamente praticabili durante l'intero processo di pianificazione. Sono state condotte diverse simulazioni per validare l'efficacia dell'algoritmo, dimostrando la sua capacità di generare traiettorie prive di collisioni, continue e in grado di soddisfare vincoli fisici in ambienti 3D complessi a densità variabile di ostacoli. Queste simulazioni evidenziano miglioramenti nell'efficienza computazionale e nella qualità della traiettoria rispetto a metodi tradizionali. Inoltre, l'applicabilità dell'algoritmo nel mondo reale è stata validata tramite esperimenti di volo con un drone ad ali fisse di piccole dimensioni. Gli esperimenti confermano la robustezza dell'algoritmo in grado di generare ed inseguire traiettorie fisicamente fattibili. I risultati presentati in questo lavoro offrono un contributo nel campo della navigazione autonoma per i droni ad ali fisse, migliorando la loro capacità di operare in ambienti con ostacoli. L'algoritmo proposto ha ampie applicazioni in settori come la sorveglianza, il monitoraggio ambientale e la risposta a disastri, dove una pianificazione affidabile ed efficiente della traiettoria è cruciale per il successo delle missioni.
Kinodynamic RRT* for path planning of a small fixed-wing UAV
LACOVARA, STEFANO
2024/2025
Abstract
This work presents an enhanced version of the Kinodynamic Rapidly-exploring Random Tree (RRT) algorithm, specifically designed for online path planning of small fixed-wing unmanned aerial vehicles (UAVs) operating in environments constrained by obstacles. Unlike conventional RRT-based methods, which primarily focus on geometric feasibility, this approach integrates both dynamic and kinematic constraints of fixed-wing aircraft, directly into the sampling and optimization process. The proposed algorithm leverages a cost-to-go heuristic alongside a rewiring mechanism, ensuring asymptotic optimality while ensuring that the generated paths remain dynamically feasible throughout the planning process. Extensive simulations are conducted to validate the algorithm’s effectiveness, demonstrating its ability to generate collision-free, smooth, and dynamically feasible trajectories in complex 3D environments with varying obstacle densities. These simulations highlight improvements in computational efficiency and path quality compared to traditional methods. Furthermore, the algorithm’s real-world applicability is validated through flight experiments on a small fixed-wing UAV platform. The experiments confirm the robustness of the algorithm, as it successfully generates and executes dynamically feasible trajectories. The findings presented in this work offer a contribution to the field of autonomous navigation for fixed-wing UAVs, enhancing their ability to perform in obstacle-rich environments. The proposed algorithm has broad potential applications in areas such as surveillance, environmental monitoring, and disaster response, where reliable and efficient path planning is crucial for mission success.File | Dimensione | Formato | |
---|---|---|---|
Lacovara_Stefano.pdf
accesso riservato
Dimensione
19.79 MB
Formato
Adobe PDF
|
19.79 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/85247