Building energy modeling is a critical factor for improving the operational performance and reducing the energy use of the building impacting the environment. The goal of this study is to focus on the energy modeling and calibration of the Testbed KTH 2.0 in order to predict and improve the accuracy of the space heating power and indoor temperatures of the bedrooms. For that purpose, the manual calibration was implemented to minimize the difference between the simulation results extracted from IDA ICE and measured data collected from Building Management System (BMS). The data from BMS as well as the local weather data were processed to support robust and precise comparison. Through a screening sensitivity analysis and iterative adjustments, the energy model was successfully calibrated to reflect the actual conditions of the Testbed KTH 2.0. The final results illustrated strong agreement with the actual measurements meeting ASHRAE 14 guideline for model accuracy using MBE and CV(RMSE) values to quantify the error range. This work illustrates a practical and replicable approach and method in energy model calibration that can be used in future application of building energy simulation and analysis.
La modellazione energetica degli edifici è un fattore fondamentale per migliorare le prestazioni operative e ridurre il consumo energetico degli edifici, con un impatto significativo sull'ambiente. L'obiettivo di questo studio è concentrarsi sulla modellazione energetica e sulla calibrazione del Testbed KTH 2.0 al fine di prevedere e migliorare l'accuratezza della potenza di riscaldamento per gli spazi e delle temperature interne delle camere da letto. A tal fine, è stata implementata una calibrazione manuale per ridurre al minimo la differenza tra i risultati di simulazione ottenuti con IDA ICE e i dati misurati raccolti dal Sistema di Gestione Edificio (BMS). I dati del BMS, così come i dati meteorologici locali, sono stati elaborati per supportare confronti robusti e precisi. Attraverso un'analisi di sensibilità preliminare e aggiustamenti iterativi, il modello energetico è stato con successo calibrato per riflettere le condizioni reali del Testbed KTH 2.0. I risultati finali hanno mostrato una forte concordanza con le misurazioni effettive, rispettando le linee guida ASHRAE 14 per l'accuratezza del modello, utilizzando i valori di MBE e CV(RMSE) per quantificare l'intervallo di errore. Questo lavoro illustra un approccio pratico e replicabile nella calibrazione dei modelli energetici.
Modeling and calibration of KTH testbed
MOKARAM RAFTARI, ALIAKBAR
2024/2025
Abstract
Building energy modeling is a critical factor for improving the operational performance and reducing the energy use of the building impacting the environment. The goal of this study is to focus on the energy modeling and calibration of the Testbed KTH 2.0 in order to predict and improve the accuracy of the space heating power and indoor temperatures of the bedrooms. For that purpose, the manual calibration was implemented to minimize the difference between the simulation results extracted from IDA ICE and measured data collected from Building Management System (BMS). The data from BMS as well as the local weather data were processed to support robust and precise comparison. Through a screening sensitivity analysis and iterative adjustments, the energy model was successfully calibrated to reflect the actual conditions of the Testbed KTH 2.0. The final results illustrated strong agreement with the actual measurements meeting ASHRAE 14 guideline for model accuracy using MBE and CV(RMSE) values to quantify the error range. This work illustrates a practical and replicable approach and method in energy model calibration that can be used in future application of building energy simulation and analysis.File | Dimensione | Formato | |
---|---|---|---|
Mokaram Raftari_Aliakbar.pdf
embargo fino al 15/10/2026
Dimensione
3.29 MB
Formato
Adobe PDF
|
3.29 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/85271