The biomechanics of human foot tendons, which are essential for body stability and movement, remains less explored compared to larger tendons such as the Achilles tendon or the patellar tendon. This thesis aims to investigate the mechanical properties of human foot digit tendons through a combined in vitro and in silico approach, with the goal of examining their biomechanical behavior. In vitro analyses were conducted on flexor and extensor tendon samples collected from five subjects, provided by the Orthopedic Clinic of the Azienda Ospedaliera of Padua (Ethical Committee AOP2649). The samples were subjected to uniaxial tensile testing until failure and stress relaxation tests using the Biomomentum Mach-1 device, to assess both the elastic and viscous behaviors. This was followed by the in silico processing of the data using Matlab R2023b, from which the stress-strain curves, equilibrium response, and key mechanical parameters were derived, including the Young's modulus, Ultimate Tensile Strength (UTS), and time-dependent viscoelastic behavior. These experimental data were then used to apply three different constitutive models, aiming to accurately describe the mechanical response of the foot digit tendons. The models were compared using quantitative criteria considering both the quality of the fit to the experimental data and the complexity of the formulations. In parallel, a pre-existing dataset of foot digit tendons from a diabetic subject, obtained from a previous thesis work using the same experimental protocol, was analyzed to ensure consistency in comparison. For these samples, the key mechanical parameters were also derived, and the same three constitutive models defined for healthy tendons were applied. The comparison between the two groups allowed the investigation of biomechanical differences related to the pathological condition, both at the experimental and modeling levels, providing new insights into the effect of diabetes on tendon functionality, a topic still poorly explored in the scientific literature.
La biomeccanica dei tendini del piede umano, fondamentali per la stabilità e il movimento del corpo umano, risulta ancora poco esplorata rispetto a quella di tendini di maggiori dimensioni, come il tendine di Achille o il tendine patellare. Il presente lavoro di tesi mira ad indagare le proprietà meccaniche dei tendini delle dita del piede umano mediante un approccio combinato in vitro e in silico, con l'obiettivo di esaminarne il comportamento biomeccanico. Le analisi in vitro sono state condotte su campioni di tendini flessori ed estensori prelevati da cinque soggetti, forniti dalla Clinica Ortopedica dell’Azienda Ospedaliera di Padova (comitato etico AOP2649). I campioni sono stati sottoposti a trazione uniassiale fino alla rottura e a prove di stress relaxation, utilizzando il macchinario Biomomentum Mach-1, per valutare sia il comportamento elastico sia quello viscoso. Ha avuto poi seguito la fase di post-processing in silico dei dati raccolti tramite il software Matlab R2023b, ottenendo le curve tensione-deformazione, la risposta all’equilibrio e i parametri meccanici relativi sia alla risposta elastica, come i moduli di Young, l’Ultimate Tensile Strength (UTS), che al comportamento tempo-dipendente del tessuto tendineo. Questi dati sperimentali sono stati utilizzati per definire tre modelli costitutivi differenti, con l'obiettivo di descrivere la risposta meccanica dei tendini delle dita del piede; i modelli sono stati successivamente confrontati utilizzando criteri quantitativi in grado di valutare sia l’accuratezza dell’adattamento ai dati sperimentali, sia la complessità delle formulazioni, al fine di individuare quello più efficace e rappresentativo. In parallelo, è stato analizzato un dataset preesistente relativo a tendini delle dita del piede di un soggetto diabetico, tratto da un precedente lavoro di tesi in cui è stato utilizzato lo stesso protocollo sperimentale, così da garantire coerenza nel confronto. Anche per questi campioni sono stati ricavati i principali parametri meccanici e sono stati applicati gli stessi tre modelli costitutivi definiti per i tendini sani. Il confronto tra i due gruppi ha permesso di indagare le differenze biomeccaniche legate alla condizione patologica, sia a livello dei dati sperimentali che delle risposte modellistiche, offrendo nuovi spunti di riflessione sull’effetto del diabete sulla funzionalità tendinea, un tema ancora poco approfondito in letteratura scientifica.
Caratterizzazione biomeccanica dei tendini sani e diabetici del piede umano: analisi in vitro e in silico
CECERE, MARIAPIA
2024/2025
Abstract
The biomechanics of human foot tendons, which are essential for body stability and movement, remains less explored compared to larger tendons such as the Achilles tendon or the patellar tendon. This thesis aims to investigate the mechanical properties of human foot digit tendons through a combined in vitro and in silico approach, with the goal of examining their biomechanical behavior. In vitro analyses were conducted on flexor and extensor tendon samples collected from five subjects, provided by the Orthopedic Clinic of the Azienda Ospedaliera of Padua (Ethical Committee AOP2649). The samples were subjected to uniaxial tensile testing until failure and stress relaxation tests using the Biomomentum Mach-1 device, to assess both the elastic and viscous behaviors. This was followed by the in silico processing of the data using Matlab R2023b, from which the stress-strain curves, equilibrium response, and key mechanical parameters were derived, including the Young's modulus, Ultimate Tensile Strength (UTS), and time-dependent viscoelastic behavior. These experimental data were then used to apply three different constitutive models, aiming to accurately describe the mechanical response of the foot digit tendons. The models were compared using quantitative criteria considering both the quality of the fit to the experimental data and the complexity of the formulations. In parallel, a pre-existing dataset of foot digit tendons from a diabetic subject, obtained from a previous thesis work using the same experimental protocol, was analyzed to ensure consistency in comparison. For these samples, the key mechanical parameters were also derived, and the same three constitutive models defined for healthy tendons were applied. The comparison between the two groups allowed the investigation of biomechanical differences related to the pathological condition, both at the experimental and modeling levels, providing new insights into the effect of diabetes on tendon functionality, a topic still poorly explored in the scientific literature.| File | Dimensione | Formato | |
|---|---|---|---|
|
Cecere_Mariapia.pdf
embargo fino al 14/07/2028
Dimensione
5.85 MB
Formato
Adobe PDF
|
5.85 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/87668