The thesis introduces a reduced-order model for the analysis of electromagnetic levitation devices, designed to replace costly time domain FEM simulations. By adopting a Lagrangian formulation of the electromagnetic system, the device is modeled as a single equivalent element. The results expose the limitations of this approach, which is therefore extended into a more refined formulation via the integral equation method, capable of capturing local phenomena and mutual interactions: the lumped-parameter representation strikes a favorable balance between accuracy and computational effort. To account for thermal effects, an equivalent thermal model is then incorporated, coupling electromagnetic and thermal dynamics and thus confirming the system's multiphysics character. In summary, the proposed methodology delivers an optimal trade-off between precision and computational resources, proving to be a highly effective tool during the design, analysis, and control stages.
La tesi propone un modello ridotto per l’analisi dei dispositivi per la levitazione elettromagnetica, concepito come sostituto delle onerose simulazioni FEM nel dominio del tempo. Partendo da una formulazione lagrangiana del sistema elettromagnetico, il dispositivo è rappresentato come un singolo elemento equivalente. I risultati evidenziano i limiti di questo approccio, che evolve dunque verso una descrizione più raffinata del problema attraverso metodo integrale, capace di cogliere fenomeni locali e le interazioni reciproche: la rappresentazione a parametri concentrati offre un buon bilanciamento fra accuratezza e costo computazionale. Per cogliere gli effetti termici, si introduce un modello termico equivalente che accoppia la dinamica elettromagnetica a quella termica, confermando la natura multifisica del sistema. In sintesi, l'approccio proposto garantisce un compromesso ottimale tra accuratezza e risorse di calcolo, rivelandosi uno strumento efficace nelle fasi di progetto, analisi e controllo.
Analisi e simulazione di sistemi per la levitazione magnetica
MANTOVAN, DANIELE
2024/2025
Abstract
The thesis introduces a reduced-order model for the analysis of electromagnetic levitation devices, designed to replace costly time domain FEM simulations. By adopting a Lagrangian formulation of the electromagnetic system, the device is modeled as a single equivalent element. The results expose the limitations of this approach, which is therefore extended into a more refined formulation via the integral equation method, capable of capturing local phenomena and mutual interactions: the lumped-parameter representation strikes a favorable balance between accuracy and computational effort. To account for thermal effects, an equivalent thermal model is then incorporated, coupling electromagnetic and thermal dynamics and thus confirming the system's multiphysics character. In summary, the proposed methodology delivers an optimal trade-off between precision and computational resources, proving to be a highly effective tool during the design, analysis, and control stages.| File | Dimensione | Formato | |
|---|---|---|---|
|
Mantovan_Daniele.pdf
accesso aperto
Dimensione
5.27 MB
Formato
Adobe PDF
|
5.27 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/88482