This Master’s thesis presents an experimental–numerical investigation of fatigue crack initiation and propagation in composite laminates, carried out on smooth and open-hole specimens with different lay-ups. The stress state was determined numerically by means of finite-element analysis, from which the Local Maximum Principal Stress (LMPS) was computed both along the edges of the smooth coupons and around the hole edges of the perforated ones. These distributions enabled the construction of LMPS–N curves for both configurations; for the open-hole specimens the crack-initiation angle associated with the stress concentration was also identified. The initiation cycles measured on the smooth specimens were used to calibrate the parameters of the Weibull distribution, which were then employed to statistically estimate crack initiation in the open-hole specimens and compare it with the corresponding experimental data. Crack propagation was analysed by evaluating the Energy Release Rate (G) and the crack-growth rate, allowing the Paris curves (G–da/dN) to be plotted for all specimens. The integration of FEM analyses, LMPS–N curves, Weibull statistics and propagation characterisation provides a comprehensive framework for assessing the fatigue life of composite laminates, with or without holes.
Questa tesi di Laurea Magistrale presenta uno studio sperimentale-numerico sull’innesco e la propagazione di cricche a fatica in laminati compositi, condotto su provini lisci e forati con differenti lay-up. Lo stato tensionale è stato determinato numericamente tramite analisi agli elementi finiti e da esso è stata calcolata la Local Maximum Principal Stress (LMPS) sia sul bordo dei provini lisci sia lungo il bordo foro dei campioni forati. Le relative distribuzioni hanno permesso di costruire le curve LMPS–N per entrambe le configurazioni; nei forati è stato inoltre individuato l’angolo di innesco associato alla concentrazione di tensione. I cicli di innesco misurati sui lisci hanno consentito di calibrare i parametri della distribuzione di Weibull, successivamente impiegati per stimare statisticamente l’innesco nei provini forati e confrontarli con le misure sperimentali. La fase di propagazione è stata analizzata valutando l’Energy Release Rate (G) e la velocità di crescita delle cricche, tracciando le curve di Paris (G–da/dN) dei provini. L’integrazione di analisi FEM, curve LMPS–N, distribuzione di Weibull e caratterizzazione della propagazione costituisce un quadro completo per la valutazione della vita a fatica dei laminati in materiale composito con o senza fori.
ANALISI DELL'EVOLUZIONE DEL DANNO A FATICA IN LAMINATI FORATI
MARCAZZAN, LORENZO
2024/2025
Abstract
This Master’s thesis presents an experimental–numerical investigation of fatigue crack initiation and propagation in composite laminates, carried out on smooth and open-hole specimens with different lay-ups. The stress state was determined numerically by means of finite-element analysis, from which the Local Maximum Principal Stress (LMPS) was computed both along the edges of the smooth coupons and around the hole edges of the perforated ones. These distributions enabled the construction of LMPS–N curves for both configurations; for the open-hole specimens the crack-initiation angle associated with the stress concentration was also identified. The initiation cycles measured on the smooth specimens were used to calibrate the parameters of the Weibull distribution, which were then employed to statistically estimate crack initiation in the open-hole specimens and compare it with the corresponding experimental data. Crack propagation was analysed by evaluating the Energy Release Rate (G) and the crack-growth rate, allowing the Paris curves (G–da/dN) to be plotted for all specimens. The integration of FEM analyses, LMPS–N curves, Weibull statistics and propagation characterisation provides a comprehensive framework for assessing the fatigue life of composite laminates, with or without holes.| File | Dimensione | Formato | |
|---|---|---|---|
|
MARCAZZAN_LORENZO.pdf
accesso aperto
Dimensione
7.58 MB
Formato
Adobe PDF
|
7.58 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/88595