Wireless communication is increasingly being adopted in control applications due to its advantages over wired solutions—lower installation costs, improved flexibility, and easier maintenance, among others. These benefits, however, come with trade-offs, particularly in terms of reliability and security. This thesis focuses on the former: ensuring real-time control performance over unreliable wireless networks. This is especially relevant in scenarios involving many interacting agents, such as smart factories, connected homes, or coordinated fleets of mobile robots. In such contexts, efficient bandwidth usage becomes critical—not only to reduce congestion but also to maintain stability and safety of the control action. This thesis focuses on packetized predictive control, where an offloaded controller transmits full input trajectories to the plant at each control instant. These trajectories are computed using Model Predictive Control (MPC), which solves an optimization problem over a finite horizon based on a model of the system. Transmitting full trajectories enables the plant to continue operation during packet loss events, provided suitable handling mechanisms are in place. The work builds on the approach presented in a previous work, which addresses constraint-satisfying reference tracking under minimal assumptions on network quality. Two main contributions are presented: 1)A modification of the packet management strategy, aimed at reducing bandwidth-consumption. 2)An extension based on Move-Blocking MPC, analyzing its benefits for networked control and providing conditions for recursive feasibility. Experimental results and implementation details of the proposed algorithms are provided, including data collected over a real 5G network. The results show how the aforementioned contributions allow to significantly reduce the bandwidth consumption with comparable performance to the original setup, while maintaining safety of the system even in presence of packet losses and black outs. The introduction of move blocking MPC also allows to reduce the computational time -one of the main bottlenecks of MPC- allowing to reduce delays and consequent chance of packet loss.
La comunicazione wireless viene sempre più adottata nelle applicazioni di controllo grazie ai suoi vantaggi rispetto alle soluzioni cablate, tra cui costi di installazione inferiori, maggiore flessibilità e manutenzione più semplice. Questi vantaggi, tuttavia, comportano dei compromessi, in particolare in termini di affidabilità e sicurezza. Questa tesi si concentra sul primo aspetto: garantire prestazioni di controllo in tempo reale su reti wireless inaffidabili. Ciò è particolarmente rilevante in scenari che coinvolgono molti agenti interagenti, come fabbriche intelligenti, case connesse o flotte coordinate di robot mobili. In tali contesti, l'uso efficiente della larghezza di banda diventa fondamentale, non solo per ridurre la congestione, ma anche per mantenere la stabilità e la sicurezza dell'azione di controllo. Questa tesi si concentra sul controllo predittivo a pacchetti, in cui un controller offload trasmette traiettorie di input complete all'impianto in ogni istante di controllo. Queste traiettorie vengono calcolate utilizzando il Model Predictive Control (MPC), che risolve un problema di ottimizzazione su un orizzonte finito basato su un modello del sistema. La trasmissione delle traiettorie complete consente all'impianto di continuare a funzionare durante gli eventi di perdita di pacchetti, a condizione che siano in atto meccanismi di gestione adeguati. Il lavoro si basa sull'approccio presentato in un lavoro precedente, che affronta il tracciamento di riferimento che soddisfa i vincoli con ipotesi minime sulla qualità della rete. Vengono presentati due contributi principali: 1) Una modifica della strategia di gestione dei pacchetti, volta a ridurre il consumo di larghezza di banda. 2) Un'estensione basata sul Move-Blocking MPC, che ne analizza i vantaggi per il controllo in rete e fornisce le condizioni per la fattibilità ricorsiva. Vengono forniti i risultati sperimentali e i dettagli di implementazione degli algoritmi proposti, compresi i dati raccolti su una rete 5G reale. I risultati mostrano come i contributi sopra menzionati consentano di ridurre significativamente il consumo di larghezza di banda con prestazioni paragonabili alla configurazione originale, mantenendo la sicurezza del sistema anche in presenza di perdite di pacchetti e black out. L'introduzione del Move-Blocking MPC consente inoltre di ridurre il tempo di calcolo - uno dei principali colli di bottiglia dell'MPC - consentendo di ridurre i ritardi e la conseguente possibilità di perdita di pacchetti.
Methods for Bandwidth reduction in Packetized Control approaches over Lossy Networks
MINGOIA, ALBERTO
2024/2025
Abstract
Wireless communication is increasingly being adopted in control applications due to its advantages over wired solutions—lower installation costs, improved flexibility, and easier maintenance, among others. These benefits, however, come with trade-offs, particularly in terms of reliability and security. This thesis focuses on the former: ensuring real-time control performance over unreliable wireless networks. This is especially relevant in scenarios involving many interacting agents, such as smart factories, connected homes, or coordinated fleets of mobile robots. In such contexts, efficient bandwidth usage becomes critical—not only to reduce congestion but also to maintain stability and safety of the control action. This thesis focuses on packetized predictive control, where an offloaded controller transmits full input trajectories to the plant at each control instant. These trajectories are computed using Model Predictive Control (MPC), which solves an optimization problem over a finite horizon based on a model of the system. Transmitting full trajectories enables the plant to continue operation during packet loss events, provided suitable handling mechanisms are in place. The work builds on the approach presented in a previous work, which addresses constraint-satisfying reference tracking under minimal assumptions on network quality. Two main contributions are presented: 1)A modification of the packet management strategy, aimed at reducing bandwidth-consumption. 2)An extension based on Move-Blocking MPC, analyzing its benefits for networked control and providing conditions for recursive feasibility. Experimental results and implementation details of the proposed algorithms are provided, including data collected over a real 5G network. The results show how the aforementioned contributions allow to significantly reduce the bandwidth consumption with comparable performance to the original setup, while maintaining safety of the system even in presence of packet losses and black outs. The introduction of move blocking MPC also allows to reduce the computational time -one of the main bottlenecks of MPC- allowing to reduce delays and consequent chance of packet loss.| File | Dimensione | Formato | |
|---|---|---|---|
|
Mingoia_Alberto.pdf
Accesso riservato
Dimensione
4.77 MB
Formato
Adobe PDF
|
4.77 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/90294