In the realm of catalysis, perovskite-based oxides have emerged as intriguing candidates owing to their unique structural properties and versatile functionalities. This thesis presents a systematic study on the synthesis, structural characterization, and redox behavior of lanthanum-based perovskite-type polycationic oxides, with the aim of elucidating structure–function relationships. Different compositions were synthesized via auto-combustion, including LaxFeO3, LaxMnO3, and multicationic variants doped at both A and B sites such as La0.72Sr0.18Fe0.9Ni0.1O3, La0.72Sr0.09Ca0.09Fe0.9Ni0.1O3, La0.72Sr0.09Ca0.09Mn0.9Ni0.1O3, La0.72Sr0.09Ca0.09Fe0.45Mn0.45Ni0.1O3, La0.45Sr0.36Ca0.09Fe0.9Ni0.1O3, La0.45Sr0.36Ca0.09Mn0.9Ni0.1O3. The materials were characterized using Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), BET surface area measurements, and temperature-programmed reduction/oxidation (TPR/TPO). XRD confirmed phase purity and crystallinity, while BET and TGA provided insights into porosity and thermal stability. TPR/TPO analyses revealed distinct redox profiles, highlighting the role of dopants in oxygen mobility and reducibility. A-site substitution with Sr promoted oxygen vacancy formation and enhanced reducibility, whereas Ca improved thermal robustness. B-site doping with Mn and Ni modified the electronic environment, enabling multivalent redox cycling. Mixed A/B-site compositions exhibited synergistic effects, broadening redox profiles and increasing surface reactivity. The findings demonstrate that compositional tuning can influence the physicochemical and redox properties of perovskite oxides.
Nel campo della catalisi, gli ossidi a base di perovskite si sono rivelati candidati interessanti grazie alle loro proprietà strutturali uniche e alle loro versatili funzionalità. Questa tesi presenta uno studio sistematico sulla sintesi, la caratterizzazione strutturale e il comportamento redox degli ossidi policationici di tipo perovskite a base di lantanio, con l'obiettivo di chiarire le relazioni struttura-funzione. Sono state sintetizzate diverse composizioni tramite autocombustione, tra cui LaxFeO3, LaxMnO3, e varianti multicationiche dopate sia nel sito A che nel sito B, includendo La0.72Sr0.18Fe0.9Ni0.1O3, La0.72Sr0.09Ca0.09Fe0.9Ni0.1O3, La0.72Sr0.09Ca0.09Mn0.9Ni0.1O3, La0.72Sr0.09Ca0.09Fe0.45Mn0.45Ni0.1O3, La0.45Sr0.36Ca0.09Fe0.9Ni0.1O3, La0.45Sr0.36Ca0.09Mn0.9Ni0.1O3. I materiali sono stati caratterizzati utilizzando la spettroscopia Raman, la diffrazione dei raggi X (XRD), l'analisi termogravimetrica (TGA), le misurazioni dell'area superficiale BET e la riduzione/ossidazione programmata in temperatura (TPR/TPO). La XRD ha confermato la purezza di fase e la cristallinità, mentre la BET e la TGA hanno fornito informazioni sulla porosità e sulla stabilità termica. Le analisi TPR/TPO hanno rivelato profili redox distinti, evidenziando il ruolo dei droganti nella mobilità dell'ossigeno e nella riducibilità. La sostituzione del sito A con Sr ha favorito la formazione di vuoti di ossigeno e migliorato la riducibilità, mentre il Ca ha migliorato la robustezza termica. Il drogaggio del sito B con Mn e Ni ha modificato l'ambiente elettronico, consentendo un ciclo redox multivalente. Le composizioni miste dei siti A/B hanno mostrato effetti sinergici, ampliando i profili redox e aumentando la reattività superficiale. I risultati dimostrano che la regolazione della composizione può influenzare le proprietà fisico-chimiche e redox degli ossidi di perovskite.
Development, investigation and characterization of perovskites-type polycationic oxides
CIFANI, ELENA
2024/2025
Abstract
In the realm of catalysis, perovskite-based oxides have emerged as intriguing candidates owing to their unique structural properties and versatile functionalities. This thesis presents a systematic study on the synthesis, structural characterization, and redox behavior of lanthanum-based perovskite-type polycationic oxides, with the aim of elucidating structure–function relationships. Different compositions were synthesized via auto-combustion, including LaxFeO3, LaxMnO3, and multicationic variants doped at both A and B sites such as La0.72Sr0.18Fe0.9Ni0.1O3, La0.72Sr0.09Ca0.09Fe0.9Ni0.1O3, La0.72Sr0.09Ca0.09Mn0.9Ni0.1O3, La0.72Sr0.09Ca0.09Fe0.45Mn0.45Ni0.1O3, La0.45Sr0.36Ca0.09Fe0.9Ni0.1O3, La0.45Sr0.36Ca0.09Mn0.9Ni0.1O3. The materials were characterized using Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), BET surface area measurements, and temperature-programmed reduction/oxidation (TPR/TPO). XRD confirmed phase purity and crystallinity, while BET and TGA provided insights into porosity and thermal stability. TPR/TPO analyses revealed distinct redox profiles, highlighting the role of dopants in oxygen mobility and reducibility. A-site substitution with Sr promoted oxygen vacancy formation and enhanced reducibility, whereas Ca improved thermal robustness. B-site doping with Mn and Ni modified the electronic environment, enabling multivalent redox cycling. Mixed A/B-site compositions exhibited synergistic effects, broadening redox profiles and increasing surface reactivity. The findings demonstrate that compositional tuning can influence the physicochemical and redox properties of perovskite oxides.| File | Dimensione | Formato | |
|---|---|---|---|
|
MASTER THESIS - Elena.pdf
accesso aperto
Dimensione
7.4 MB
Formato
Adobe PDF
|
7.4 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/90339