Antimicrobial resistance (AMR) represents one of the most urgent global health challenges of the 21st century. Among the various pathogens responsible, Pseudomonas aeruginosa is particularly notorious due to its strong biofilm-forming capabilities, which significantly enhances its resistance to antibiotic treatments. This biofilm formation is particularly problematic in the context of cystic fibrosis (CF), where the accumulation of thick mucus in the lungs creates a niche that promotes chronic biofilm-associated infections and impedes antibiotic penetration. Building upon this medical challenge, the core objective of the project was to develop a manganese-based material capable of inducing the dispersion of Pseudomonas aeruginosa biofilm, thereby enabling the simultaneous treatment of both dispersed bacterial cells and the remaining biofilm with antibiotics, with the ultimate goal of achieving complete eradication of the infection. Prior to designing such a material, it was essential to first understand the specific effects of manganese ions on the biofilm life cycle of Pseudomonas aeruginosa. To this end, initial investigations focused on elucidating the influence of manganese ions on some stages of the biofilm life cycle, under varying oxygen conditions. The results demonstrated that manganese ions significantly inhibit biofilm formation under oxic conditions while promoting it under limited-oxygen environ-ments. Importantly, manganese ions consistently induced biofilm dispersion across all tested oxygen levels, indicating a robust and oxygen-independent dispersal effect. Subsequent experiments explored the potential of co-administering manganese ions with Tobramycin, a clinically relevant antibiotic in CF care. The combination not only inhibited biofilm development but also eradicated mature biofilms, confirming a potentiated antimicrobial effect. Based on these findings, PLGA-PVA nanoparticles were engineered to co-encapsulate manganese ions and Tobramycin. The nanoparticles were successfully synthesized and their morphology was characterized using Scanning Electron Microscopy (SEM), which revealed a uniform, spherical structure. Encapsulation efficiency was subsequently evaluated: manganese ion loading was found to be highly efficient, exceeding 99%. Instead, Tobramycin encapsulation reached approximately 53% when loaded alone, but decreased to around 25% in the co-loaded formulations, indicating potential competitive interactions between manganese ions and Tobramycin during the encapsulation process. Although biological validation, such as mucus penetration assays, drug release profiling, and cytotoxicity studies, has not yet been conducted, the current results offer a solid starting point for the development of a novel solution capable of dispersing biofilms and delivering antibiotics directly to infection sites, particularly in the context of cystic fibrosis patients.
La resistenza antimicrobica (AMR) rappresenta una delle sfide più urgenti per la salute globale del XXI secolo. Tra i vari patogeni responsabili, Pseudomonas aeruginosa è particolarmente noto per la sua forte capacità di formare biofilm, caratteristica che ne aumenta significativamente la resistenza ai trattamenti antibiotici. La formazione di biofilm risulta particolarmente problematica nel contesto della fibrosi cistica (CF), dove l’accumulo di muco denso nei polmoni crea un ambiente favorevole alle infezioni croniche associate ai biofilm e ostacola la penetrazione degli antibiotici. Partendo da questa sfida medica, l’obiettivo principale del progetto è stato quello di sviluppare un materiale a base di manganese in grado di indurre la dispersione del biofilm di Pseudomonas aeruginosa, consentendo così il trattamento simultaneo sia delle cellule batteriche disperse sia del biofilm residuo con antibiotici, con l’obiettivo finale di ottenere l’eradicazione completa dell’infezione. Prima di progettare un tale materiale, è stato essenziale comprendere gli effetti specifici degli ioni manganese sul ciclo vitale del biofilm di Pseudomonas aeruginosa. A questo scopo, le prime indagini si sono concentrate sull’analisi dell’influenza degli ioni manganese su alcune fasi del ciclo vitale del biofilm, in condizioni di ossigeno variabili. I risultati hanno dimostrato che gli ioni manganese inibiscono significativamente la formazione di biofilm in condizioni ossiche, mentre la favoriscono in ambienti a ossigeno limitato. È importante sottolineare che gli ioni manganese hanno indotto costantemente la dispersione del biofilm in tutti i livelli di ossigeno testati, indicando un effetto di dispersione robusto e indipendente dall’ossigeno. Esperimenti successivi hanno esplorato la possibilità di co-somministrare ioni manganese insieme alla Tobramicina, un antibiotico clinicamente rilevante nella cura della fibrosi cistica. La combinazione non solo ha inibito lo sviluppo del biofilm, ma ha anche permesso l’eradicazione di biofilm maturi, confermando un effetto antimicrobico potenziato. Sulla base di questi risultati, sono state progettate nanoparticelle di PLGA-PVA per co-incapsulare ioni manganese e Tobramicina. Le nanoparticelle sono state sintetizzate con successo e la loro morfologia è stata caratterizzata mediante microscopia elettronica a scansione (SEM), che ha rivelato una struttura uniforme e sferica. Successivamente, è stata valutata l’efficienza di incapsulamento: il caricamento degli ioni manganese è risultato altamente efficiente, superando il 99%. Al contrario, l’incapsulamento della Tobramicina ha raggiunto circa il 53% quando caricata da sola, ma è sceso a circa il 25% nelle formulazioni co-incapsulate, suggerendo possibili interazioni competitive tra ioni manganese e Tobramicina durante il processo di incapsulamento. Sebbene la validazione biologica, come i test di penetrazione nel muco, i profili di rilascio del farmaco e gli studi di citotossicità, non sia ancora stata condotta, i risultati attuali offrono una base solida per lo sviluppo di una nuova soluzione capace di disperdere i biofilm e di veicolare antibiotici direttamente nei siti di infezione, in particolare nel contesto dei pazienti affetti da fibrosi cistica.
Manganese-based materials to treat Pseudomonas aeruginosa associated-biofilm infections
ZONTA, MARIA LAURA
2024/2025
Abstract
Antimicrobial resistance (AMR) represents one of the most urgent global health challenges of the 21st century. Among the various pathogens responsible, Pseudomonas aeruginosa is particularly notorious due to its strong biofilm-forming capabilities, which significantly enhances its resistance to antibiotic treatments. This biofilm formation is particularly problematic in the context of cystic fibrosis (CF), where the accumulation of thick mucus in the lungs creates a niche that promotes chronic biofilm-associated infections and impedes antibiotic penetration. Building upon this medical challenge, the core objective of the project was to develop a manganese-based material capable of inducing the dispersion of Pseudomonas aeruginosa biofilm, thereby enabling the simultaneous treatment of both dispersed bacterial cells and the remaining biofilm with antibiotics, with the ultimate goal of achieving complete eradication of the infection. Prior to designing such a material, it was essential to first understand the specific effects of manganese ions on the biofilm life cycle of Pseudomonas aeruginosa. To this end, initial investigations focused on elucidating the influence of manganese ions on some stages of the biofilm life cycle, under varying oxygen conditions. The results demonstrated that manganese ions significantly inhibit biofilm formation under oxic conditions while promoting it under limited-oxygen environ-ments. Importantly, manganese ions consistently induced biofilm dispersion across all tested oxygen levels, indicating a robust and oxygen-independent dispersal effect. Subsequent experiments explored the potential of co-administering manganese ions with Tobramycin, a clinically relevant antibiotic in CF care. The combination not only inhibited biofilm development but also eradicated mature biofilms, confirming a potentiated antimicrobial effect. Based on these findings, PLGA-PVA nanoparticles were engineered to co-encapsulate manganese ions and Tobramycin. The nanoparticles were successfully synthesized and their morphology was characterized using Scanning Electron Microscopy (SEM), which revealed a uniform, spherical structure. Encapsulation efficiency was subsequently evaluated: manganese ion loading was found to be highly efficient, exceeding 99%. Instead, Tobramycin encapsulation reached approximately 53% when loaded alone, but decreased to around 25% in the co-loaded formulations, indicating potential competitive interactions between manganese ions and Tobramycin during the encapsulation process. Although biological validation, such as mucus penetration assays, drug release profiling, and cytotoxicity studies, has not yet been conducted, the current results offer a solid starting point for the development of a novel solution capable of dispersing biofilms and delivering antibiotics directly to infection sites, particularly in the context of cystic fibrosis patients.| File | Dimensione | Formato | |
|---|---|---|---|
|
Zonta_MariaLaura_Thesis.pdf
Accesso riservato
Dimensione
5.55 MB
Formato
Adobe PDF
|
5.55 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/90353