This thesis presents the analysis, design, and control of a high-efficiency LLC resonant converter intended for medium-to-high power applications. The work is structured into three main parts. First, a comprehensive study of the LLC topology is carried out, highlighting its operating principles, advantages, and limitations. Different control strategies are then investigated, including Direct- Frequency Control (DFC), Time-Shift Control (TSC), and Charge Mode Control (CMC). Among these, an improved Charge Mode Control (iCMC) is proposed, combining feedback and feedforward actions to enhance dynamic performance and reduce output voltage ripple. The second part focuses on the design of the magnetic components. A detailed methodology is developed to dimension both the transformer and the resonant inductor, with particular attention to minimizing power losses. Core and wind- ing losses are analytically modelled and experimentally validated. Finally, the third part presents the experimental validation with a 6.25 kW pro- totype. Particular emphasis is placed on the magnetic components, namely two parallel transformers and the external resonant inductor, designed for a resonant frequency of 90 kHz. Experimental measurements demonstrate good agreement with theoretical models, though second-order effects introduced some discrep- ancies in loss estimation. The results confirm the potential of the LLC resonant converter to achieve high efficiency and fast dynamic response, making it a strong candidate for future high-power, high-density energy conversion systems with stringent transient requirements. Further work will focus on optimized magnetic design, advanced synchronous rectification, and real-time FPGA-based control implementation
Il lavoro di tesi presenta l’analisi, la progettazione e il controllo di un con- vertitore risonante LLC ad alta efficienza, destinato ad applicazioni di potenza medio-alta. Il lavoro è strutturato in tre parti principali. Nella prima parte, è con- dotto uno studio approfondito della topologia LLC, evidenziandone i principi di funzionamento, i vantaggi e le limitazioni. Successivamente, sono investi- gate diverse strategie di controllo, tra cui il Direct-Frequency Control (DFC), il Time-Shift Control (TSC) e il Charge Mode Control (CMC). Tra queste, è pro- posto l’improved Charge Mode Control (iCMC), metodo che combina azioni di feedback e feedforward al fine di migliorare le prestazioni dinamiche e ridurre il ripple della tensione di uscita. La seconda parte è dedicata alla progettazione dei componenti magnetici. Viene descrittta una metodologia dettagliata per il dimensionamento sia del trasforma- tore sia dell’induttore risonante, con particolare attenzione alla minimizzazione delle perdite di potenza. Le perdite del nucleo e degli avvolgimenti sono model- late analiticamente e successivamente validate sperimentalmente. Infine, la terza parte presenta la validazione sperimentale con un prototipo da 6.25 kW. Particolare enfasi è posta sui componenti magnetici, ossia due trasfor- matori in parallelo e l’induttore risonante esterno, progettati per una frequenza di risonanza di 90 kHz. Le misure sperimentali mostrano un buon accordo con i modelli teorici, sebbene effetti di secondo ordine abbiano introdotto alcune discrepanze nella stima delle perdite. I risultati confermano il potenziale del convertitore LLC risonante nel rag- giungere elevata efficienza e risposta dinamica rapida, rendendolo un can- didato valido per futuri sistemi di conversione energetica ad alta potenza e alta densità, con stringenti requisiti di transitorio. Ulteriori lavori si concentr- eranno sull’ottimizzazione della progettazione magnetica, sull’impiego di tec- niche avanzate di rettificazione sincrona e sull’implementazione di un controllo in tempo reale basato su FPGA.
Analisi e Progettazione di un convertitore LLC ad Alta Efficienza
PEREA, FILIPPO
2024/2025
Abstract
This thesis presents the analysis, design, and control of a high-efficiency LLC resonant converter intended for medium-to-high power applications. The work is structured into three main parts. First, a comprehensive study of the LLC topology is carried out, highlighting its operating principles, advantages, and limitations. Different control strategies are then investigated, including Direct- Frequency Control (DFC), Time-Shift Control (TSC), and Charge Mode Control (CMC). Among these, an improved Charge Mode Control (iCMC) is proposed, combining feedback and feedforward actions to enhance dynamic performance and reduce output voltage ripple. The second part focuses on the design of the magnetic components. A detailed methodology is developed to dimension both the transformer and the resonant inductor, with particular attention to minimizing power losses. Core and wind- ing losses are analytically modelled and experimentally validated. Finally, the third part presents the experimental validation with a 6.25 kW pro- totype. Particular emphasis is placed on the magnetic components, namely two parallel transformers and the external resonant inductor, designed for a resonant frequency of 90 kHz. Experimental measurements demonstrate good agreement with theoretical models, though second-order effects introduced some discrep- ancies in loss estimation. The results confirm the potential of the LLC resonant converter to achieve high efficiency and fast dynamic response, making it a strong candidate for future high-power, high-density energy conversion systems with stringent transient requirements. Further work will focus on optimized magnetic design, advanced synchronous rectification, and real-time FPGA-based control implementation| File | Dimensione | Formato | |
|---|---|---|---|
|
Perea_Filippo_2129568.pdf
Accesso riservato
Dimensione
10.36 MB
Formato
Adobe PDF
|
10.36 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/90359