This study was carried out in the Paneveggio Natural Park (Italian Alps) in collaboration with APROFOD Trento, focusing on a fully mechanized harvesting site aimed at removing Norway spruce (Picea abies) stands affected by Ips typographus infestation. The primary objective was to develop an integrated approach for the technical and operational assessment of a John Deere 1270G 8W harvester, analyzing active work phases, fuel consumption, and CO₂ emissions at the single-tree level and investigating their relationship with dendrometric and operational variables. The methodology combined on-board machine data collected through a CanEdge device connected to the CAN-bus with detailed video analysis of work cycles, distinguishing felling, processing, and non-productive movements. Synchronizing the two datasets enabled the creation of a comprehensive per-tree database linking dimensional attributes, operational times, and energy use, further integrated with field-based dendrometric measurements. Results highlight a strong correlation between tree diameter and operational performance: larger stems are associated with higher per-tree time, fuel consumption, and emissions, while achieving better volume-specific efficiency; the opposite trend is observed in stands with small-sized trees. Processing emerged as the dominant contributor to both energy demand and environmental impact. Cross-site comparison demonstrated that diameter distribution and stand structural homogeneity significantly influence cycle regularity, productivity, and efficiency. The CAN-bus/video integration proved to be a reliable and high-resolution method for operational monitoring, although data synchronization posed some technical challenges. As the analysis considered only active work phases, the findings also emphasize the operational weight of preparation and relocation times, which were excluded but are critical for overall site performance. Future developments should explore the use of machine learning algorithms for automated phase detection, enhancing the applicability of this approach under real working conditions. Overall, the results underline the potential of data-driven methods for optimizing mechanized harvesting operations and improving both technical and environmental efficiency in complex alpine contexts.
Lo studio è stato realizzato nel Parco Naturale di Paneveggio, in collaborazione con APROFOD Trento, su un cantiere forestale meccanizzato per il prelievo di abete rosso (Picea abies) danneggiato da infestazione di bostrico. L’obiettivo principale era sviluppare e testare un metodo integrato per la caratterizzazione tecnico-operativa di un harvester John Deere 1270G 8W, analizzando tempi attivi, consumi ed emissioni a livello di singola pianta e valutando le relazioni con le caratteristiche dendrometriche e le condizioni di lavoro. L’approccio ha previsto la combinazione di due tipologie di dati: i parametri macchina, acquisiti tramite dispositivo CanEdge collegato al CAN-bus, e l’analisi video dei cicli operativi, con identificazione delle fasi di abbattimento, processamento e spostamento/preparazione. La sincronizzazione dei due dataset ha permesso di costruire una base dati unica, associando a ogni pianta informazioni su dimensioni, tempi ed energia impiegata. I dati sono stati integrati con le rilevazioni dendrometriche di campo, utilizzando misurazioni da video per i casi mancanti. L’analisi ha evidenziato una relazione marcata tra dimensione dei fusti e prestazioni operative: all’aumentare del diametro si osservano tempi più elevati, in particolare nella fase di processamento, che rappresenta anche la quota prevalente di consumi ed emissioni. I risultati confermano come diametri maggiori comportino valori più alti per pianta ma migliori efficienze specifiche per unità di volume, mentre nei popolamenti con piante più piccole si osserva l’effetto opposto. La comparazione tra cantieri ha mostrato come la distribuzione diametrica e l’omogeneità strutturale influenzino direttamente regolarità dei cicli, tempi medi e produttività complessiva. Il metodo di sincronizzazione CAN-bus/video ha dimostrato la capacità di associare in modo puntuale parametri operativi completi a ogni pianta, pur evidenziando alcune criticità legate all’allineamento temporale dei segnali. Lo studio si è focalizzato sui soli tempi attivi, sottolineando come le fasi di preparazione e spostamento – non incluse nell’analisi – rappresentino una quota rilevante delle operazioni e possano generare significative variazioni tra cantieri. In prospettiva, l’integrazione di sistemi basati su intelligenza artificiale per il riconoscimento automatico delle fasi operative potrà rendere la metodologia più rapida e applicabile direttamente in campo. I risultati ottenuti costituiscono una base solida per l’analisi tecnico-energetica dei cantieri forestali meccanizzati in contesti alpini, con ricadute sulla pianificazione operativa e sulla gestione sostenibile delle risorse.
Integrazione di dati CAN-Bus e video per l’analisi delle fasi operative di un harvester in un cantiere colpito da bostrico: caso studio nella Foresta di Paneveggio (TN)
CATTELAN, FEDERICO
2024/2025
Abstract
This study was carried out in the Paneveggio Natural Park (Italian Alps) in collaboration with APROFOD Trento, focusing on a fully mechanized harvesting site aimed at removing Norway spruce (Picea abies) stands affected by Ips typographus infestation. The primary objective was to develop an integrated approach for the technical and operational assessment of a John Deere 1270G 8W harvester, analyzing active work phases, fuel consumption, and CO₂ emissions at the single-tree level and investigating their relationship with dendrometric and operational variables. The methodology combined on-board machine data collected through a CanEdge device connected to the CAN-bus with detailed video analysis of work cycles, distinguishing felling, processing, and non-productive movements. Synchronizing the two datasets enabled the creation of a comprehensive per-tree database linking dimensional attributes, operational times, and energy use, further integrated with field-based dendrometric measurements. Results highlight a strong correlation between tree diameter and operational performance: larger stems are associated with higher per-tree time, fuel consumption, and emissions, while achieving better volume-specific efficiency; the opposite trend is observed in stands with small-sized trees. Processing emerged as the dominant contributor to both energy demand and environmental impact. Cross-site comparison demonstrated that diameter distribution and stand structural homogeneity significantly influence cycle regularity, productivity, and efficiency. The CAN-bus/video integration proved to be a reliable and high-resolution method for operational monitoring, although data synchronization posed some technical challenges. As the analysis considered only active work phases, the findings also emphasize the operational weight of preparation and relocation times, which were excluded but are critical for overall site performance. Future developments should explore the use of machine learning algorithms for automated phase detection, enhancing the applicability of this approach under real working conditions. Overall, the results underline the potential of data-driven methods for optimizing mechanized harvesting operations and improving both technical and environmental efficiency in complex alpine contexts.| File | Dimensione | Formato | |
|---|---|---|---|
|
Cattelan_Federico.pdf
embargo fino al 16/09/2028
Dimensione
2.04 MB
Formato
Adobe PDF
|
2.04 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/91304