Pseudomonas fluorescens is a ubiquitous Gram-negative bacterium known for its metabolic and genomic plasticity. In the food sector, its psychrotrophic nature makes it a primary spoilage agent for refrigerated products, causing organoleptic defects through the production of heat-stable enzymes and pigments, as seen in the well-known case of "blue mozzarella". Its ability to persist in harsh environments, often through biofilm formation, poses significant challenges to food safety and quality. The Long-Term Stationary Phase (LTSP) is an excellent laboratory model for studying evolutionary dynamics and bacterial survival mechanisms under stress and nutrient-limiting conditions. The objective of this thesis was to investigate the adaptive strategies of P. fluorescens at the phenotypic and genetic levels during a prolonged incubation period mimicking LTSP conditions. To this end, clonal populations were incubated for two years at two different storage temperatures, 4°C and 22°C, to simulate refrigeration and ambient conditions. At regular intervals, clones were isolated from the evolving cultures for a comprehensive phenotypic characterization, which included viable counts, growth curve analysis, motility assessment (swimming and swarming), and quantification of Viable But Non-Culturable (VBNC) and persister cell subpopulations. The genetic basis of evolution was investigated through Whole-Genome Sequencing (WGS) of selected clones, followed by bioinformatic analysis to identify accumulated mutations. The results highlighted an evolutionary divergence between the populations incubated at the two temperatures. Significant phenotypic variations emerged, particularly in motility profiles and the prevalence of dormant states like VBNC, suggesting the adoption of temperature-dependent survival strategies. Genomic analysis revealed the accumulation of specific mutations in key genes involved in global regulatory processes, metabolism, and stress response, directly correlating the genetic changes with the observed phenotypic adaptations. Overall, this study demonstrates that LTSP acts as a powerful selective driver, promoting distinct evolutionary pathways in P. fluorescens and providing valuable insights into the mechanisms underlying its persistence and spoilage potential in food ecosystems.
Pseudomonas fluorescens è un batterio Gram-negativo ubiquitario, noto per la sua plasticità metabolica e genomica. Nel settore alimentare, la sua natura psicrotrofa lo rende uno dei principali agenti di spoilage per i prodotti refrigerati, causando difetti organolettici tramite la produzione di enzimi termostabili e pigmenti, come nel noto caso della "mozzarella blu". La sua capacità di persistere in ambienti ostili, spesso tramite la formazione di biofilm, pone sfide significative per la sicurezza e la qualità degli alimenti. La fase stazionaria di lunga durata (Long-Term Stationary Phase, LTSP) rappresenta un eccellente modello di laboratorio per studiare le dinamiche evolutive e i meccanismi di sopravvivenza batterica in condizioni di stress e carenza di nutrienti. Questo lavoro di tesi si è posto l'obiettivo di investigare le strategie adattative, a livello fenotipico e genetico, di P. fluorescens durante un periodo di incubazione prolungato, mimando le condizioni della LTSP. A tal fine, popolazioni clonali sono state incubate per due anni a due diverse temperature di conservazione, 4°C e 22°C, per simulare condizioni di refrigerazione e ambientali. A intervalli regolari, sono stati isolati cloni dalle colture in evoluzione per una caratterizzazione fenotipica completa, che ha incluso conte vitali, analisi delle curve di crescita, valutazione della motilità (swimming e swarming) e quantificazione delle sub-popolazioni di cellule vitali ma non coltivabili (VBNC) e persisters. Le basi genetiche dell'evoluzione sono state indagate tramite sequenziamento dell'intero genoma (WGS) di cloni selezionati, seguito da analisi bioinformatica per l'identificazione delle mutazioni accumulate. I risultati hanno evidenziato una divergenza evolutiva tra le popolazioni incubate alle due temperature. Sono emerse significative variazioni fenotipiche, in particolare nei profili di motilità e nella prevalenza di stati dormienti come VBNC, suggerendo l'adozione di strategie di sopravvivenza temperatura-dipendenti. L'analisi genomica ha rivelato l'accumulo di specifiche mutazioni in geni chiave coinvolti in processi regolatori globali, nel metabolismo e nella risposta allo stress, correlando direttamente i cambiamenti genetici agli adattamenti fenotipici osservati. Complessivamente, questo studio dimostra come la LTSP agisca da potente motore selettivo, promuovendo in P. fluorescens percorsi evolutivi distinti e fornendo preziose informazioni sui meccanismi che ne determinano la persistenza e il potenziale alterativo negli ecosistemi alimentari.
Studio dell’evoluzione di Pseudomonas fluorescens in Long-Term Stationary Phase: caratterizzazione genetica e fenotipica
BROCCOLI, FEDERICA
2024/2025
Abstract
Pseudomonas fluorescens is a ubiquitous Gram-negative bacterium known for its metabolic and genomic plasticity. In the food sector, its psychrotrophic nature makes it a primary spoilage agent for refrigerated products, causing organoleptic defects through the production of heat-stable enzymes and pigments, as seen in the well-known case of "blue mozzarella". Its ability to persist in harsh environments, often through biofilm formation, poses significant challenges to food safety and quality. The Long-Term Stationary Phase (LTSP) is an excellent laboratory model for studying evolutionary dynamics and bacterial survival mechanisms under stress and nutrient-limiting conditions. The objective of this thesis was to investigate the adaptive strategies of P. fluorescens at the phenotypic and genetic levels during a prolonged incubation period mimicking LTSP conditions. To this end, clonal populations were incubated for two years at two different storage temperatures, 4°C and 22°C, to simulate refrigeration and ambient conditions. At regular intervals, clones were isolated from the evolving cultures for a comprehensive phenotypic characterization, which included viable counts, growth curve analysis, motility assessment (swimming and swarming), and quantification of Viable But Non-Culturable (VBNC) and persister cell subpopulations. The genetic basis of evolution was investigated through Whole-Genome Sequencing (WGS) of selected clones, followed by bioinformatic analysis to identify accumulated mutations. The results highlighted an evolutionary divergence between the populations incubated at the two temperatures. Significant phenotypic variations emerged, particularly in motility profiles and the prevalence of dormant states like VBNC, suggesting the adoption of temperature-dependent survival strategies. Genomic analysis revealed the accumulation of specific mutations in key genes involved in global regulatory processes, metabolism, and stress response, directly correlating the genetic changes with the observed phenotypic adaptations. Overall, this study demonstrates that LTSP acts as a powerful selective driver, promoting distinct evolutionary pathways in P. fluorescens and providing valuable insights into the mechanisms underlying its persistence and spoilage potential in food ecosystems.| File | Dimensione | Formato | |
|---|---|---|---|
|
TESI_BROCCOLI_FEDERICA.pdf
accesso aperto
Dimensione
5.42 MB
Formato
Adobe PDF
|
5.42 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/91309