In the first part of the thesis, we inspect the relation between factorizazions and lifting systems. Under some (not really restrictive) assumptions on a category, these turn out to be intimately connected. We also provide an algorithm that, starting from a selected set of morphisms, gives un back a factorization system. In the second part of the thesis, such an algorithm is applied in the category of commutative rings. By choosing three different sets of generators, we induce three different factorizations systems. The first one, already known, includes conservative maps and localizations. The remaining ones rely on seminormal and absolutely weakly normal rings. In such a context, the obtained factorizations include maps of rings that induce isomorphism on residue fields and/or universal homeomorphisms of spectra.
Nella prima parte della tesi si indaga sul legame tra i sistemi di fattorizzazione e di sollevamento. Sotto alcune ipotesi (non così restrittive) su di una categoria, questi ultimi si rivelano intimamente connessi; si introduce inoltre un algoritmo che, partendo da un sistema di morfismi, restituisce un sistema di fattorizzazione. Nella seconda parte della tesi, tale algoritmo viene applicato nella categoria degli anelli commutativi. Scegliendo tre differenti insiemi generatori, si inducono tre differenti sistemi di fattorizzazione. Il primo, già noto, comprende mappe conservative e localizzazioni. I restanti due si fondano sui concetti di anelli seminormali e assolutamente debolmente normali. In tale contesto, le fattorizzazioni ottenute coinvolgono mappe di anelli che inducono isomorfismi sui campi residui e/o omeomorfismi universali di spettri.
Factorizations and lifting systems in the category of commutative rings
BRACCHETTI, MATTIA
2024/2025
Abstract
In the first part of the thesis, we inspect the relation between factorizazions and lifting systems. Under some (not really restrictive) assumptions on a category, these turn out to be intimately connected. We also provide an algorithm that, starting from a selected set of morphisms, gives un back a factorization system. In the second part of the thesis, such an algorithm is applied in the category of commutative rings. By choosing three different sets of generators, we induce three different factorizations systems. The first one, already known, includes conservative maps and localizations. The remaining ones rely on seminormal and absolutely weakly normal rings. In such a context, the obtained factorizations include maps of rings that induce isomorphism on residue fields and/or universal homeomorphisms of spectra.| File | Dimensione | Formato | |
|---|---|---|---|
|
Bracchetti_Mattia.pdf
Accesso riservato
Dimensione
510.5 kB
Formato
Adobe PDF
|
510.5 kB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/91870